## Missing Transverse Energy at the Tevatron

Volker Büscher Universität Freiburg



### **Outline:**

IntroductionMissing  $E_T$  and the W massHiggs searches relying on missing  $E_T$ Searches for new physics with missing  $E_T$ 

Thanks to Viacheslav Shary, Patrice Verdier, Song Ming Wang

## Particle detection in collider detectors based on

- electromagnetic or strong interaction
- instrumentation above a certain minimum angle wrt the beam

## Collider detectors will miss:

- proton remnants (momentum along the beam direction)
- neutrinos
- gravitons
- neutralinos, gravitinos etc.



Can use conservation of transverse momentum to infer  $p_T$  of particles escaping:

 $\rightarrow$  the orist's definition of Missing  $E_T$ 

$$E_T = -\sum\limits_{vis} p_T$$



# **Experimentalist's View**

The challenge: precise measurement of  $\Sigma p_T^{vis}$ 

– requires hermetic detector  $\rightarrow$  calorimeter:  $\Sigma_{cell} E_T^{cal}$ 



## Several problems:

- need to relate calorimeter energy deposition to particle momentum (calibration etc.)
- need to separate energy from event under study from all other depositions
- need to combine with tracking to measure direction of energy flow

Tevatron collider provides massive samples of W events  $\rightarrow$  precision measurements of W mass and width

Both measurements rely on transverse mass distribution

$$M_T = \sqrt{2p_T^\ell E_T(1-\cos\Delta\Phi(\ell,E_T))}$$



### CDF/DØ currently aiming at 50 MeV error on $M_W$

 $\rightarrow$  need very precise calibration of electrons, muons and recoil





## W mass and width – Lepton Calibration



- Muon momentum scale measured in  $J/\Psi$  and Upsilon decays
  - CDF: calibrated to 0.03% ( $\rightarrow \Delta M_W = \pm 25$  MeV)
- Electron energy scale measured using E/p
  - CDF: energy scale contributes with  $\Delta M_W = \pm 35$  MeV
- use tail of E/p to tune modelling of upstream material distribution (Bremsstrahlung!)
  - CDF: material distribution:  $\Delta M_W = \pm 55$  MeV

# W mass and width – Recoil Calibration

## **Recoil modelling:**

- calorimeter response to hadrons (measured and modelled using  $Z \rightarrow ll$ )
- noise/pileup modelled using minimum-bias data
- measurement of energy flow from underlying event is biased by lepton reconstruction and isolation  $(u_{\parallel})$ 
  - modelled in W events





- CDF: Recoil resolution modelling contributes with  $\Delta M_W = \pm 42$  MeV
- CDF: Simulation of bias  $u_{\parallel}$  matches data within 30 MeV

## W width – Results



## W mass – Results



CDF (200  $pb^{-1}$ ): (blind) analysis is in place, no result quoted yet

### Errors already improve on Run I:

|                                    | Electron Channel |       | Muon Channel |       |
|------------------------------------|------------------|-------|--------------|-------|
| Uncertainty                        | Run II           | Run I | Run II       | Run I |
| Lepton Energy Scale and Resolution | 70               | 80    | 30           | 87    |
| <b>Recoil Scale and Resolution</b> | 50               | 37    | 50           | 35    |
| Backgrounds                        | 20               | 5     | 20           | 25    |
| Statistics                         | 45               | 65    | 50           | 100   |
| <b>Production and Decay Model</b>  | 30               | 30    | 30           | 30    |
| Total                              | 105              | 110   | 85           | 140   |

### Hoping to achieve 50 MeV combined uncertainty this year (now: 76 MeV, Run I: 79 MeV)

# Search for Higgs bosons at the Tevatron



#### Heavy Higgs bosons ( $m_H > 130$ GeV):



Dominant decay mode:  $H \rightarrow WW$ 

**Production: Gluon-Gluon Fusion** 

- $\rightarrow\,$  relatively high cross-section
- $\rightarrow$  clean 2-lepton+ $E_T$  signature via H $\rightarrow$ WW $\rightarrow$ l $\nu$ l $\nu$

Light Higgs bosons ( $m_H < 130$  GeV):



Dominant decay mode:  $H{
ightarrow}bar{b}$ 

Production: in association with W,Z

 $\rightarrow$  leptonic W,Z-decays provide best signature

 $\rightarrow$  b-tagging to suppress background from W/Z+jets

## Search for $H \rightarrow WW$ – Backgrounds

Search for heavy Higgs bosons is in progress (CDF 184  $pb^{-1}$ , DØ 175  $pb^{-1}$ )

- Selections for  $ee + E_T$ ,  $e\mu + E_T$ ,  $\mu\mu + E_T$
- Backgrounds:
  - WW  $\rightarrow l\nu l\nu$  (irreducible)
  - W+ $\gamma$ /jet (in particular with converted photons)
  - Z $/\gamma^* 
    ightarrow ll$

### Missing $E_T$ requirement is critical to rejection of Z $\rightarrow$ ll events

Problem: mismeasured leptons and jets cause tails in  $E_T$  distribution



### **Calorimeter response correction**

- determined from energy balance in  $\gamma$ +jet
- function of energy and position (cracks etc)



- Note: need high-statistics photon samples down to small photon  $E_T$ 

## **Out-of-cone showering**

- correct for leakage out of the jet cone

## Offset correction (from minimum-bias data)

- subtract energy from underlying event
- subtract energy from multiple interactions (as a function of number of PV)



Several methods to deal with fake  $E_T$  from mismeasured leptons or jets:

- remove events with  $E_T$  pointing in direction of lepton/jet
- remove events with jets hitting poorly instrumented regions (cracks)
- cut on transverse mass of lepton and  $E_T$
- calculate  $E_T$  significance, i.e. normalize  $E_T$  to expected resolution event-by-event:

$$\mathrm{Sig}(E_T) = rac{E_T}{\sqrt{\sum_{\mathrm{jets}} \sigma_{E_T^j \parallel E_T}^2}}$$



### Results (for $m_H = 160$ GeV):

|     |                         | Background     | Data       | Efficiency        |  |
|-----|-------------------------|----------------|------------|-------------------|--|
|     |                         | (# events)     | (# events) | (for $H \to WW$ ) |  |
| CDF | (184 pb <sup>-1</sup> ) | 5.8±0.6        | 3          | 0.4%              |  |
| DØ  | $(175 \text{ pb}^{-1})$ | $11.1{\pm}0.8$ | 9          | 0.7%              |  |

### No excess of events observed

 $\rightarrow$  limits on  $\sigma$  x BR(H $\rightarrow$ WW)

### Standard Model with 4th generation:

heavy quark loops enhance cross-section

Standard Model: need  $4fb^{-1}$  for sensitivity to exclude at 95% C.L.



## Search for large extra dimensions (ADD):

- Gravitons can be produced recoiling against quark/gluon
- Kaluza-Klein tower of many gravitons
   → sizeable cross-sections
- Gravitons escape detection
  - $\rightarrow$  monojet signature

## Search for Supersymmetry:

- $p\bar{p}$ -Collider: strong production of Squarks/Gluinos ( $\rightarrow$  large cross-sections)
- Signature:  $\tilde{q}\tilde{q} \rightarrow q \tilde{\chi}_1^0 q \tilde{\chi}_1^0$  (Neutralino LSPs escape detection  $\rightarrow$  2 jets +  $E_T$ )



Analyzed 85  $pb^{-1}$  collected by Jets+ $E_T$  trigger:

- requires missing HT>30
- jet acoplanarity<170

## Typical offline analysis cuts:

- $E_T{>}150$  GeV, Jet  $p_{\perp}{>}150$  GeV (monojets)
- $E_T$ >175 GeV,  $\Sigma_i pt^i_{jet}$ >275 GeV (squarks)



## **Searches for SUSY and ED – Calorimeter Noise**

#### A trigger on $E_T$ provides an excellent test sample for data quality control:



#### Mean $E_T$ used as offline and online monitoring tool:

- online: monitoring mean and width of  $E_T$  run-by-run
- offline: calculated for each 1-minute block of data to detect intermittent problems



# **Searches for SUSY and ED – Calorimeter Noise**

Large variety of (rare) problems detected by monitoring tools and physics analysis:

- Hot cells (hardware failures, pedestal shifts)
- External noise
- Gain variations (hardware failures)





Fixing these problems involves:

- replacing/repairing hardware
- repairing data in software:
  - derived analysis samples contain cell-level information
  - $\rightarrow$  can fix data and rerun calorimeter reconstruction with quick turnaround
- flagging data quality for each 1-minute block of data

## **Searches for SUSY and ED – Beam Background (CDF)**



#### 4 cm gap in shielding at $\phi=\pm90^\circ$

- $\rightarrow$  fake  $E_T$  due to energy depositions from beam losses
- $\rightarrow$  more shielding has been added

#### Halo muons from beam halo hitting roman pots

 $\rightarrow$  fake  $E_T$  from energy depositions parallel to beam at  $\Phi = 180^{\circ}$ 



## Searches for SUSY and ED – Vertexing

- Calculation of missing  $E_T$  needs direction of energy flow
- Fake  $E_T$  can be caused by:
  - wrong primary vertex
  - energy from additional interactions
- important for "compact" detectors like DØ
- Solution:
  - sum transverse momenta of charged particles pointing from primary vertex to jet energy deposition in calorimeter
  - require a minimum charged particle fraction for each jet
- also rejects background from fake jets:
  - showers generated by cosmic muons
  - calorimeter noise
  - beam background



## **Searches for SUSY and Extra Dimensions – Results**



#### Monojet search:

- 100<sup>+50</sup><sub>-30</sub> events expected (mainly  $Z \rightarrow \nu \bar{\nu}$ )
- 63 events observed
- $\rightarrow$  limit on M<sub>D</sub>: >680 GeV

Search for squarks/gluinos:

- 4 events observed (2.7±1.0 expected)
- $\rightarrow$  limits improved beyond Run I

Update (more data, improved JES) in progress





- Missing transverse energy is an important tool at hadron colliders
- Measurement of  $E_T$  relies on calibration of leptons, jets, soft particles
- $E_T$  is a central ingredient in many high-profile Run II analyses:
  - W mass measurement
  - Search for Higgs bosons
  - Search for Supersymmetry and Extra Dimensions
- Searches with high  $E_T$  require excellent understanding of fake  $E_T$ 
  - Controlling and modelling of non-Gaussian tails
  - Calorimeter noise removal
  - Data quality control
- Still hoping to establish a Neutralino signal at the Tevatron to provide a standard candle for  $E_T$  calibration at the LHC