

TeV4LHC Workshop

BNL, February 4, 2005

b quarks and Higgs Physics at Hadron Colliders

Doreen Wackeroth

In the Standard Model, Higgs boson production in association with *b* quarks is suppressed by the small *b* quark Yukawa coupling, $g_{bbH} = \frac{m_b}{v} \approx 0.02$. In the MSSM, however, the cross sections to $p\bar{p}, pp \rightarrow b\bar{b}\Phi^0, \Phi^0 = h^0, H^0, A^0$, are enhanced with respect to the SM for large values of tan β :

$g_{f\!f\!\phi^0}^{M\!S\!S\!M}/g_{f\!f\!H}$	h^0, H^0	A^0
$I_3^f = -1/2$ $f = \mathbf{b}, \mu, \tau, \dots$	$\frac{(-\sin\alpha,\cos\alpha)}{\cos\beta}$	aneta
$I_3^f = 1/2$ $f = t, \dots$	$\frac{(\cos\alpha,\sin\alpha)}{\sin\beta}$	\coteta

At $\tan \beta = 40$, for instance, the $b\bar{b}(h^0, H^0, A^0)$ coupling can be as strong as the SM $t\bar{t}H$ coupling.

At large $\tan \beta$ Higgs boson production in association with *b* quarks becomes the dominant neutral MSSM Higgs production mode:

M.Spira, Fortschr.Phys.46 (1998) and hep-ph/9810289 (update)

Branching ratios for the MSSM neutral Higgs bosons, H^0 and A^0 , at large $\tan \beta$:

taken from R.Kinnunen, CMS-CR-2004-058

Most studies use the LEP setup: $M_2 = 200 \text{ GeV}, \mu = -200 \text{ GeV}$ $M_{\tilde{g}} = 800 \text{ GeV}, M_{\tilde{q},\tilde{l}} = 1 \text{ TeV}$ $\Rightarrow \text{ no } \Phi^0 \text{ decay to sparticles}$ and at large $\tan \beta$ only $\Phi^0 \rightarrow b\bar{b}, \tau\tau, \mu\mu$ decays are considered

LHC H^0 , A^0 discovery potential using sparticle decay modes: see, e.g.,

F.Moortgat et al, hep-ph/0112046

Higgs boson production in association with b quarks in the MSSM is an important production mode for

- discovery of $\Phi^0 = h^0, H^0, A^0$,
- measurement of Φ^0 masses and $\tan\beta$,
- obtaining information about b quark and τ, μ Yukawa couplings.

Production modes:

 $b\overline{b} \rightarrow \Phi^0$: fully inclusive, no *b* quark identified LHC: only through $\Phi^0 \rightarrow \tau \tau, \mu \mu$, since QCD multijet background to $\Phi^0 \rightarrow b\overline{b}$ too large

 $bg \rightarrow b\Phi^0, \bar{b}g \rightarrow \bar{b}\Phi^0$: semi-inclusive, one $b(\bar{b})$ quark identified $gg, q\bar{q} \rightarrow b\bar{b}\Phi^0$: exclusive, two *b* quarks identified

measures unambiguously the b Yukawa coupling, $\sigma\propto g^2_{bb\Phi^0}({\rm at\ tree\ level})$

Tevatron MSSM neutral Higgs discovery potential

Search for MSSM $h = H^0, h^0, A^0$ in 3 *b*-tagged events using D0 Run II data (left) and Tevatron 95 % CL exclusion contours for $b\bar{b}h \rightarrow b\bar{b}b\bar{b}$ (right):

from The D0 collaboration, D0 Note 4366 - CONF from the Report of the Tevatron Higgs WG, hep-ph/0010338 see also talk by S.M.Wang, Moriond 2004 CDF: Search for $\phi^0 \rightarrow \tau \tau$ in inclusive Higgs production: see talk by W.Yao, ICHEP04

LHC MSSM neutral Higgs discovery potential

Sensitivity for a MSSM light Higgs (h^0) boson discovery (left) and the discovery potential for $b\bar{b}h^0$ with $h^0 \to \mu^+\mu^-$ (right) (5 σ curves):

from S.Gentile, ATL-PHYS-2004-009 (and references therein)

LHC MSSM neutral Higgs discovery potential

Discovery potential for $b\bar{b}\Phi^0$ with $\Phi^0 \to \mu^+\mu^-$ (right) (5 σ curves):

from S.Dawson, D.Dicus, C.Kao, R.Malhotra, PRL92 (2004), hep-ph/0402172

LHC MSSM neutral Higgs discovery potential

Discovery potential for the MSSM heavy Higgs bosons, $gg \rightarrow b\overline{b}(H^0, A^0)$ with $H^0, A^0 \rightarrow \tau \tau, \mu \mu$ (5 σ curves):

from R.Kinnunen et al., The Higgs working group: Summary report, hep-ph/0406152

Measurement of $\tan\beta$ at the LHC

Uncertainty of the $\tan \beta$ measurement for $gg \to b\bar{b}(H^0, A^0) \to b\bar{b}\tau\tau$:

Additional SUSY parameter dependence enters through radiative corrections but for large $\tan \beta$ the replacement $\tan \beta \rightarrow \tan \beta_{eff}$ in the *b* Yukawa coupling is a good approximation and: $\sigma(gg \rightarrow b\bar{b}\Phi^0) \propto \tan \beta_{eff}^2$ see, e.g., M.Carena *et al.*, hep-ph/0208209

from R.Kinnunen et al., The Higgs working group: Summary report, hep-ph/0406152

Need for NLO QCD calculations

- $\mathcal{O}(\alpha_s)$ corrections can increase/decrease the total production rate.
- $\mathcal{O}(\alpha_s)$ corrections may affect the shape of distributions.

Associated $b\bar{b}$ Higgs production at hadron colliders

 $gg, q\bar{q} \rightarrow b\bar{b}h$ at pp and $p\bar{p}$ colliders is dominated by the gg initiated process.

The calculation of the $\mathcal{O}(\alpha_s)$ corrections to $gg, q\bar{q} \to b\bar{b}h$ is technically similar to $t\bar{t}h$ production. We "simply" replace m_t by m_b .

However, there are differences:

→ We consider both the *OS* scheme and the \overline{MS} scheme when renormalizing the *b* quark mass in the *b* Yukawa coupling: $OS: g_{bbh} = m_b/v$ with m_b being the pole mass $\overline{MS}: g_{bbh} = \overline{m}_b(\mu)/v$ with $\overline{m}_b(\mu)$ being the running mass \Rightarrow Possible improvement of perturbative calculation by resumming large logarithmic contributions to the $b\bar{b}h$ vertex.

 \rightarrow The contribution from the closed top quark loops is included, e.g.:

The $b\bar{b}h$ processes are classified according to how many *b* quarks are identified: 2 *b* quarks tagged, 1 *b* quark tagged and the fully inclusive case. In the 2(1) *b*-tag case we require two(one) high p_T *b* quark jets in the final state:

$$p_T^{b,\overline{b}} > 20 \text{ GeV}$$
 and $|\eta_{b,\overline{b}}| < 2(2.5)$ Tevatron (LHC)

Moreover, we consider the radiated gluon and the b/\overline{b} quarks as distinct particles only if

$$\Delta R = \sqrt{(\Phi_b - \Phi_g)^2 + (\eta_b - \eta_g)^2} > 0.4$$

Otherwise their 4-momentum vectors are combined into an effective b/\overline{b} momentum vector.

New D0 cuts:

$$p_T^{b,ar{b}} > 15 \; {
m GeV} \; \; {
m and} \; \; |\eta_{b,ar{b}}| < 2.5$$

Exclusive $b\overline{b}$ Higgs production at hadron colliders

- \rightarrow Requiring two high $p_T b$ quark jets in the final state reduces the signal, but also greatly reduces the background.
- \rightarrow Unambiguously proportional to the *b* quark Yukawa coupling.

Status:

Two independent calculations based on $gg, q\bar{q} \rightarrow b\bar{b}h$ at NLO QCD by S.Dittmaier, M.Krämer, M.Spira (PRD 70 (2004)) and S.Dawson, C.Jackson, L.Reina, D.W. (PRD 69 (2004)).

The results of these two calculations are in good numerical agreement.

$M_{(h^0,H^0)}, \tan\beta$ dependence in the MSSM

from S.Dawson, C.Jackson, L.Reina, D.W., PRD 69 (2004)

To a good approximation the MSSM result can be obtained from the SM result as follows:

$$\sigma_{\rm NLO}({\rm MSSM}) \sim \sigma_{\rm NLO}({\rm SM}) \left(\frac{g_{bbh}^{MSSM}}{g_{bbh}}\right)^2$$

Main Result

Drastically reduced scale dependence of the NLO QCD cross sections:

from S.Dawson, C.Jackson, L.Reina, D.W., PRD 69 (2004)

see also S.Dittmaier et al., PRD 70 (2004), and J.Campbell et al. in LesHouches 2003 proceedings, hep-ph/0405302

The *b* quark mass used in g_{bbh} is renormalized either in the on-shell (*OS*) or \overline{MS} scheme (\overline{MS} : LO with 1-loop and NLO with 2-loop running mass).

Effect of NLO QCD corrections on the Higgs p_T distribution:

Inclusive and semi-inclusive $b\bar{b}$ Higgs production at hadron colliders

For a review see, e.g., J.Campbell *et al.*, LesHouches 2003 proceedings, hep-ph/0405302.

Status: There exist two approaches, dubbed *five flavor number scheme* (5FNS) and *four flavor number scheme* (4FNS):

 $\rightarrow \, 4FNS$ approach

Fixed order, explicit matrix element calculation based on the parton level processes $gg, q\bar{q} \rightarrow b\bar{b}h$.

Inclusive (no *b* tagged) and semi-inclusive (1 *b* tagged): known at NLO Two independent calculations by S.Dittmaier, M.Krämer, M.Spira and S.Dawson, C.Jackson, L.Reina, D.W.

 \rightarrow These two calculations are in good numerical agreement.

 \rightarrow 5FNS approach

Use of b quark PDFs to sum to all orders large logs, $\alpha_s \ln(m_b^2/\mu_F^2)$ $(\mu_F \approx M_h)$, which arise due to initial-state $g \rightarrow b\bar{b}$ splitting.

\rightarrow 5FNS approach

Inclusive (no *b* tagged): known at NNLO QCD

b quark fusion, $b\bar{b} \to h$, is the leading order subprocess of $\mathcal{O}(\alpha_s^2 \ln^2(M_h/m_b))$ and $b(\bar{b})g \to b(\bar{b})h$ and $gg, q\bar{q} \to b\bar{b}h$ are identified as NLO contributions to $b\bar{b} \to h$ of $\mathcal{O}(1/\ln(M_h/m_b))$ and $\mathcal{O}(1/\ln^2(M_h/m_b))$, respectively. D.Dicus, F.Maltoni, T.Stelzer, Z.Sullivan, S.Willenbrock

Inclusive $pp, p\bar{p} \rightarrow (b\bar{b})H + X$ production has been calculated at NNLO QCD by R.Harlander, W.Kilgore.

Semi-inclusive (1 *b*-tagged): known at NLO QCD $b(\bar{b})g \rightarrow b(\bar{b})h$ is the leading order subprocess of $\mathcal{O}(\alpha_s^2 \ln(M_h/m_b))$ and $gg, q\bar{q} \rightarrow b\bar{b}h$ are identified as NLO contributions of $\mathcal{O}(1/\ln(M_h/m_b))$. J.Campbell, R.K.Ellis, F.Maltoni, S.Willenbrock

Main Result

Drastically reduced scale dependence of the NLO QCD cross sections – 1 *b* tagged:

from S.Dawson, C.Jackson, L.Reina, D.W., hep-ph/0408077

see also S.Dittmaier et al., PRD 70 (2004), and J.Campbell et al. in LesHouches 2003 proceedings, hep-ph/0405302

Main Result

Drastically reduced scale dependence of the NLO QCD cross sections – no *b* tagged:

from S.Dawson, C.Jackson, L.Reina, D.W., in prep.

see also S.Dittmaier et al., PRD 70 (2004), and J.Campbell et al. in LesHouches 2003 proceedings, hep-ph/0405302

M_h dependence – 1 *b* tagged

Comparison with *b* quark PDF approach by J.Campbell, R.K.Ellis, F.Maltoni, and S.Willenbrock:

 $gg, q\bar{q} \rightarrow b\bar{b}h$: from S.Dawson, C.Jackson, L.Reina, D.W., hep-ph/0408077, see also S.Dittmaier *et al.*, PRD 70 (2004) $gb(\bar{b}) \rightarrow b(\bar{b})h$: from J.Campbell *et al.* in LesHouches 2003 procs. (hep-ph/0405302) and closed top quark loop added to MCFM (J.Campbell *et al.*, PRD67 095002 (2003))

 M_h dependence – 0 *b* tagged (VFS)

from R.Harlander, W.Kilgore, Phys.Rev. D68 (2003) 013001

Effect of NLO QCD corrections on the Higgs p_T distribution:

D.Wackeroth, SUNY at Buffalo

TeV4LHC Workshop at BNL

Effect of NLO QCD corrections on the Higgs p_T distribution:

from S.Dawson, C.Jackson, L.Reina, D.W., hep-ph/0408077

Summary

- Higgs production in association with b quarks is an important Higgs production mode in models with an enhanced b quark Yukawa coupling, e.g. for large values of tan β in the 2HDM, MSSM.
- It is crucial to know the impact of QCD corrections.
- There has been considerable improvement in obtaining stable QCD predictions for inclusive, semi-inclusive and exclusive Higgs production in association with *b* quarks (for a review see, e.g., J.Campbell *et al.*, LesHouches 2003 proceedings, hep-ph/0405302):

 \rightarrow In all three cases, at NLO (NNLO) QCD the factorization/renormalization scale dependence is strongly reduced.

• $p\bar{p}, pp \rightarrow b\bar{b}h$ production has been calculated at NLO QCD based on the $gg, q\bar{q} \rightarrow b\bar{b}h$ parton level processes independently by two groups:

 \rightarrow Results have been obtained for the inclusive, semi-inclusive and exclusive case. They are in good numerical agreement.

 \rightarrow In the exclusive case (2 b-tagged), the remaining theoretical uncertainty is estimated to be about 15-20% (Tevatron,LHC) due to residual scale dependence and about 15-20% (Tevatron,LHC) due to *b* quark Yukawa coupling renormalization scheme dependence.

- Semi-inclusive b(b)h production based on b(b)g → b(b)h has been calculated at NLO QCD using the b quark PDF approach (5FNS).
 → The two NLO calculations, based on gg, qq̄ → bbh (4FNS) and gb(b) → b(b)h (5FNS) subprocesses, agree within their respective theoretical uncertainties.
- Inclusive (bb)h production based on b quark fusion, bb → h, is known at NNLO QCD (5FNS).

 \rightarrow The predictions based on $gg, q\bar{q} \rightarrow b\bar{b}h$ (4FNS) and $b\bar{b} \rightarrow h$ (5FNS) subprocesses agree reasonably well within their respective theoretical uncertainties.

Possible improvements and outlook:

- 4FNS: Identification and resummation of large logarithms, $\ln(M_h/m_b)$, arising when integrating over the *b* quark p_T .
- Estimate of theoretical uncertainty on cross sections to Higgs production in association with *b* quarks due to PDF uncertainties.

see, e.g, talk by Chris Jackson at this workshop