Outline

- b-tagging methods
- b-tagging and high p_T processes
- b-tagging performance at LHC
- Effects of efficiency and alignment on b-tagging
- Initial detector limitation at LHC start-up
- Conclusions

Space b-tagging

Efficiency of b-jet tagging ε_b

Rejection of light jets (udscg) $R_j = 1./\epsilon_i$

Impact parameters

Normalized Impact Parameter

$$S(a_0) = \frac{a_0}{\sigma(a_0)}$$

Smoothed distributions Probability density functions b(S) and u(S)

jet weight : $W_{jet} = \sum_{tracks} ln \left(\frac{b(S)}{u(S)} \right)$

Space and vertex b-tagging

Calibration of b-tagging with tt events

b-tagging for SM Higgs

b-tagging in SUSY

• S-quark - Two b-jets in the final state with h

- require b-tagged jet in addition to dileptons.
- sensitivity to sbottom and gluino masses.

- Charged Higgs H^{\pm} with $H^{\pm} \rightarrow tb$ or $H^{\pm} \rightarrow cb$ or $H^{\pm} \rightarrow bbW$
- Charged Higgs tH^{\pm} with $H^{\pm} \rightarrow tb$
- Cascade Neutral Higgs $H \rightarrow h h \rightarrow b b b b$ (trigger ...)
- Cascade Neutral Higgs $H \rightarrow h h \rightarrow b b \tau \tau$
- Cascade Neutral Higgs $H \rightarrow h h \rightarrow b b \gamma \gamma$
- Associated Higgs bbA/H with H \rightarrow $\tau\,\tau$
- Associated Higgs bbA/H with $H \rightarrow bb$ (trigger ...)
- Cascade Neutral Higgs $A \rightarrow Z h$ with $Z \rightarrow \mu \mu$ and $h \rightarrow b b$
- Associated Higgs Wh with $h \rightarrow bb$
- Associated Higgs tth with $h \rightarrow bb$

SUSY - b-tagging Eldorado

Performance vertex b-tagging

Final state ttH+ttjj -> ttlv4j2b (6 jets)

ATLFAST jets, 3 layers pixel detector, no pileup, $\Delta R(jet-jet)=0.7$ $\epsilon_b=50\% R_u=320$ $\epsilon_b=60\% R_u=160$ + no b-quark in a cone $\Delta R=0.6$ around light quark jet $\epsilon_b=50\% R_u=2500$ $\epsilon_b=60\% R_u=680$

b-tagging performance is limited by physics: gluon splitting and occasional coincidence between light jet and b-quark directions.

200 udsg rejection udsg rejection ttH + tt 160 180 • WH 120 GeV/c² ttH + ttWH 120 GeV/c2 140 O WH 400 GeV/c² 160 O WH 400 GeV/c² 120 140 120 100 ¢ Ŧ 100 Q 80 80 0 60 60 40 40 20 20 0 0 100 120 140 160 180 1.5 2.5 20 40 60 80 0.5 2 0 0 1 P_{T} (GeV/c) lηI

Dependence on η and $p_{\rm T}$

 ϵ_{b} =60 %, perfect detector, 3D-method, Isolated light jets in ttH,tt

8 10 c rejection c rejection 📕 ttH + tt ttH + tt WH 120 GeV/c² WH 120 GeV/c² 7.5 • 9 O WH 400 GeV/c² O WH 400 GeV/c² 7 ₽ 8 6.5 6 7 þ 5.5 0 • 6 ¢ 5 5 4.5 4 4 0.5 1.5 2.5 0 1 2 40 60 80 100 120 140 160 180 20 0 lηI P_T (GeV/c)

c-rejection dependence on η and $p_{\rm T}$

3D-method

Prospective of b-tagging

- leptons in jets
- K⁰ and Λ⁰ impact parameters
- track quality classification
- multiple secondary vertices
- η and p_T dependences of pdf
- hope to reach $\epsilon_b = 70$ % with $R_u = 100$

Soft electron b-tagging

- b-jet tagging based on B->D->eX
- choose the track with biggest electron-id

weight inside the jet

declare as b-jets if the weight is above the

threshold

• Efficiency for b-jets with electrons (~10 %

branching ratio) of $p_T > 2 \text{ GeV/c}$

Rejection with electron b-tagging

Commissioning Detector Scenario

Initial ATLAS in DC1 layout (2 barrel pixels, 2 pixel disks, no TRT C-wheels)

- default inefficiency from the start-up 3% pixels, 2% chips, 1% modules
- b-layer inefficiency 1% chips, 0.5% modules
- but systematic error big, 2/4 % inefficiencies to be considered
- Pixel-SCT alignment after 3 months $\sigma_{R\phi}=20 \ \mu m$, $\sigma_z=60 \ \mu m$
- Pixel-SCT alignment after 6 months $\sigma_{R\phi}=10 \ \mu m$, $\sigma_z=30 \ \mu m$
- Pixel-SCT alignment after 9 months $\sigma_{R\phi} = 5 \ \mu m$, $\sigma_z = 15 \ \mu m$
- Direct simulations needed to prove the feasibility of this scenario

Influence of inefficiencies with WH

Influence of alignment with ttH

- ttH+tt events, mH=120 GeV
- Low luminosity pile-up L=2 10³³ cm² s⁻¹
- Initial layout, 400 µm b-layer z-pitch
- 3D b-tagging method
- Inefficiency module/chips b-layer 0.5%/1.0%, others 1%/2%
- Specification of pixel alignment $\sigma_{R\phi}$ =5 µm σ_z =10 µm
- Specification of silicon strips tracker alignment $\sigma_{R_0}=12 \ \mu m \ \sigma_z=50 \ \mu m$

Influence of alignment with ttH(120)/ttjj

Period	Precision		R _u	R/R ₀
3 months	$σ_{R\phi}=20 \ \mu m$ $σ_z=60 \ \mu m$	ε _b =50%	175 ±4	0.67
		ε _b =60%	57 ±1	0.71
6 months	$σ_{R\phi}$ =10 μm $σ_z$ =30 μm	ε _b =50%	237 ± 7	0.91
		ε _b =60%	74 ±1	0.92
9 months	$σ_{R\phi} = 5 \mu m$ $σ_z = 15 \mu m$	ε _b =50%	259 ±8	0.99
		ε _b =60%	79 ±1	0.97
ideal	$σ_{R\phi} = 0 \mu m$ $σ_z = 0 \mu m$	ε _b =50%	262 ±8	1.
		ε _b =60%	81 ±1	1.

Pixels ATLAS

Destaged pixel layer

- Pixels 50 μm x 400 μm
- R=5 cm , 9 cm and 12 cm

ATLAS without one pixel layer

- default inefficiency 3 %
 pixels, 2 % chips, 1 % modules
- b-layer 1 % chips, 0.5% modules
- 400 µm b-layer z-pitch
- Reconstructed primary vertex
- low luminosity pile-up
- DC1 datasets:
- WH(120,400)-> bb,uu
- ttH-> bb signal
- ttjj -> b l v b jjjj -background

b-tagging and its uses at high p_T (LHC)_{Two} versus three pixel layers summary

Light jet rejection R_{udsg} for 60% b-jet tagging efficiency

Process	2 -layers	3 -layers	R _{3/2}
WH(120)	131 ± 3	164 ± 6	1.25
SV			
WH(400)	170 ± 5	257 ± 10	1.51
SV			
ttH(120)/ttjj	81 ± 1	119 ± 2	1.47
3D			

b-tagging and its uses at high p_T (LHC)_{Two} versus three pixel layers summary

Light jet rejection R_{udsg} for 60% b-jet tagging efficiency, $\Delta R_{jj} > 0.8$, $\Delta R_{jbquark} > 0.8$, calibration for Initial layout

Process	2 –layers,	3 -layers	R _{3/2}
	Initial		
ttH(120)/ttjj	135 ± 4	220 ± 8	1.63
3D			
ttH(120)/ttjj	418 ± 22	686 ± 46	1.64
SV1			
ttH(120)/ttjj	392 ± 20	659 ± 43	1.68
SV2			

- b-tagging is essential to reach new physics at LHC
- Excellent b-tagging performance in ideal LHC detectors
- "Devil" is in the performance of the real detector
- Realistic studies show acceptable performance $R_u \sim 150$ at $\epsilon_b = 60 \%$
- Low luminosity pile-up degrade by 2-5%
- High luminosity pile-up give 10-20% degradation if lepton can not be used for selection of primary vertex

Additional material

Bad tracks

Bad tracks if one of conditions:

- one shared hit in b-layer
- one shared hit in pixels
- two shared hits in SCT
- one ambiguous hit in b-layer

Influence of bad tracks on ttH/ttjj events

ttH/ttjj events, mH=120 GeV, with pile-up, 2 pixel layers Initial layout, b-layer 400 μm,

inefficiencies modules/chips 1-2 %, b-layer inef. 0.5-1.0 %

b- from ttH, u- from ttjj, ATLFAST jets, reconstructed vertex, SV1 method

 $\Delta R_{jj} > 0.8$, $\Delta R_{jbquark} > 0.8$

	No bad tracks	With bad tracks	R _{with/no}
$R_u \epsilon_b = 50\%$	1635 ± 169	1693 ± 178	1.04
ε _b =60%	386 ± 19	418 ± 22	1.08
ε _b =70%	75 ± 2	79 ± 2	1.05

Bad tracks

Bad tracks if one of conditions:

- one shared hit in b-layer
- one shared hit in pixels
- two shared hits in SCT
- one ambiguous hit in b-layer

Influence of bad tracks on ttH/ttjj events

ttH/ttjj events, mH=120 GeV, with pile-up, 2 pixel layers Initial layout, b-layer 400 μm,

inefficiencies modules/chips 1-2 %, b-layer inef. 0.5-1.0 %

b- from ttH, u- from ttjj, ATLFAST jets, reconstructed vertex, SV1 method

 $\Delta R_{jj} > 0.8$, $\Delta R_{jbquark} > 0.8$

		No bad tracks	With bad tracks	R _{with/no}
R _u	ε _b =50%	1635 ± 169	1693 ± 178	1.04
	ε _b =60%	386 ± 19	418 ± 22	1.08
	ε _b =70%	75 ± 2	79 ± 2	1.05

Data sample of ttH/ttjj events for C-wheels

ttH/ttjj events, mH=120 GeV, with pile-up, 2 pixel layers Initial layout, b-layer 400 µm,

inefficiencies modules/chips 1-2 %, b-layer inef. 0.5-1.0 %

b- from ttH, u- from ttjj, ATLFAST jets, reconstructed vertex,

 $\Delta R_{jj} > 0.8$, $\Delta R_{jbquark} > 0.8$, eta > 1.8

3D-method for c-Wheels and 2nd pixel disk

3D method

	No TRT C-wheels No pixel disk-2	With TRT C- wheels	R _{with/no}
$R_u \epsilon_b = 50\%$	86 ± 4	101 ± 6	1.17
ε _b =60%	30 ± 1	38 ± 1	1.28
ε _b =70%	11 ± 0.2	6 ± 0.1	0.59

Bad tracks

Bad tracks if one of conditions:

- one shared hit in b-layer
- one shared hit in pixels
- two shared hits in SCT
- one ambiguous hit in b-layer

Influence of bad tracks on ttH/ttjj events

ttH/ttjj events, mH=120 GeV, with pile-up, 2 pixel layers Initial layout, b-layer 400 μm,

inefficiencies modules/chips 1-2 %, b-layer inef. 0.5-1.0 %

b- from ttH, u- from ttjj, ATLFAST jets, reconstructed vertex, SV1 method

 $\Delta R_{jj} > 0.8$, $\Delta R_{jbquark} > 0.8$

		No bad tracks	With bad tracks	R _{with/no}
R _u	ε _b =50%	1635 ± 169	1693 ± 178	1.04
	ε _b =60%	386 ± 19	418 ± 22	1.08
	ε _b =70%	75 ± 2	79 ± 2	1.05

Data sample of ttH/ttjj events for C-wheels

ttH/ttjj events, mH=120 GeV, with pile-up, 2 pixel layers Initial layout, b-layer 400 µm,

inefficiencies modules/chips 1-2 %, b-layer inef. 0.5-1.0 %

b- from ttH, u- from ttjj, ATLFAST jets, reconstructed vertex,

 $\Delta R_{jj} > 0.8$, $\Delta R_{jbquark} > 0.8$, eta > 1.8

3D-method for c-Wheels and 2nd pixel disk

3D method

	No TRT C-wheels No pixel disk-2	With TRT C- wheels	R _{with/no}
$R_u \epsilon_b = 50\%$	86 ± 4	101 ± 6	1.17
ε _b =60%	30 ± 1	38 ± 1	1.28
ε _b =70%	11 ± 0.2	6 ± 0.1	0.59

	No TRT C-wheels, no pixel disk-2	With TRT C- wheels	R _{with/no}
$R_u \epsilon_b = 50\%$	223 ± 18	262 ± 23	1.17
ε _b =60%	52 ± 2	69 ± 3	1.32
$\epsilon_{\rm b}=70\%$	13 ± 0.3	21± 0.5	1.56

WH events, mH=120 GeV, no pile-up, 2 pixel layers, 3D method

Module/chip 1-ε	0.	1%/2%	2%/4%
$R_u \epsilon_b = 50\%$	336 ± 14	254 ± 9	210 ± 7
ε _b =60%	94 ± 2	76 ± 1	64 ± 1
$R/R_0 \epsilon_b = 50\%$	1.	0.76	0.63
ε _b =60%	1.	0.81	0.68

Influence of inefficiencies with WH(400)

WH events, mH=400 GeV, no pile-up, 2 pixel layers, 3D method

Module/chip 1-ε	0.	1%/2%	2%/4%
$R_u \epsilon_b = 50\%$	200 ± 7	159 ± 5	130 ± 4
ε _b =60%	66 ± 1	53 ± 1	46 ± 1
$R/R_0 \epsilon_b = 50\%$	1.	0.80	0.65
ε _b =60%	1.	0.80	0.70

Influence of inefficiencies with ttH(120)

ttH +tt events, mH=120 GeV, low lumi pile-up, Initial, 400 µm b-layer, 3D method

Module/chip 1-ε	0.	b-layer 0.5%/1%	all 1%/2%
		others 1%/2%	
$R_u \epsilon_b = 50\%$	346 ± 12	278 ± 9	261 ± 8
ε _b =60%	97 ± 2	84 ± 1	79 ± 1
$R/R_0 \epsilon_b = 50\%$	1.	0.80	0.75
ε _b =60%	1.	0.87	0.81