Missing Transverse Energy at the LHC

Chris Tully Princeton

TeV4LHC Workshop, Brookhaven (Feb. 3-5, 2005)

1

Pauli Revisited

 Nearly 75 years later, the "missing energy" measurement is still a powerful technique of searching for weakly interacting particles Computed with Calorimeter Cells (and muons): $E_{T,x} = -\sum_{i} E_{i} \sin \theta \cos \varphi = -\sum_{i} E_{x,i} / \cosh \eta$ $\boldsymbol{E}_{T,y} = -\sum \boldsymbol{E}_i \sin \theta \sin \varphi$ $\boldsymbol{E}_T = \boldsymbol{E}_x^{i} \hat{\boldsymbol{i}} + \boldsymbol{E}_y \hat{\boldsymbol{j}} \qquad (\text{``MET''})$

TeV: $W \rightarrow ev$ Selection: Electron & MET

- Require one isolated electron with a matching track
 - $p_T > 20 \text{ GeV/c}$
 - |η| < 1.1
- Require the MET to be at least 20 GeV

• MET allows us to "measure" the neutrino

TeV: W→ev Selection: W Boson

- Reconstruct
 transverse W mass
- Produces Jacobian peak with low pT tail

Transverse W mass reconstruction requirements:

- $\Delta \phi$ (electron,MET) > $\pi/8$
- 40 $\text{GeV/c}^2 < M_{WT} < 120 \text{ GeV/c}^2$

Luminosity = 164 pb^{-1}

MET(x) from Online Monitor Dzero Data from Zero Bias (left) and Jets (right)

of channelsElectronic Noise per channelLHC: Dynamic range

Broadening from $\sqrt{\sum Et}$ LHC: Larger average $\sum Et$ Higher stochastic term Constant term for $\sum Et \sim 2 TeV$

CMS Hadron Calorimeter $|\eta| < 5$

ATLAS Barrel EM+Tile (in pit!)

Test Beam/Full Simulation

CMS HCAL Test Beam data

Atlas EMEC longitudinal fraction

8

GEANT4 Tuning Both Atlas and CMS made significant contributions to the development of GEANT4

- ATLAS Tile test-beam *
- CMS Tile test-beam *
- LHCb tile test-beam
- ATLAS HEC test-beam *
- ATLAS FCAL test-beam
- BTEV crystal test-beam *
- CMS combined test-beam
- CsI test-beam benchmark
- GLAST (starting) test-beam
- H1 forward barrel *
- ATLAS combined endcap

- Atlas first with relevant test beam data
- CMS extensive large-scale MC production (20M)

Low-Energy e/h Studies

 Most particles in the event will be in a difficult energy range with respect to e/h energy variation and linearity

Low-Energy Test beam Analysis

mip in ECAL, i.e. no-interaction in ECAL

EM+HAD Calorimeter Projective Towers

O(1) Physics Goals using MET

- SUSY
 - Large MET:
 - Unambiguous detection of MET~200-300 GeV essential for first discoveries – commissioning of calorimeters will be intense.
 Assign one grad student per 10 channels?
- Higgs
 - Small (~20-100 GeV) MET:
 - $qqH(\rightarrow \tau \tau)$ mass reconstruction against $Z(\rightarrow \tau \tau)jj$ background
- Standard-Candle Model Measurements
 - Z/W+Jets MET calibration, Luminosity measurement
 - ttbar JES calibration, 3rd generation mass measurement
 - QCD dijet Minimize resolution on balanced events
 - Important for triggers

What changes at the LHC?

- Centrally a question of MET resolution and reliability
 - Non-compensating calorimeters
 - Underlying event, pile-up
 - Typical pile-up jet pT spectrum higher than at Tevatron
 - Strong magnetic fields in tracker region (looping)
 - Calibration algorithm biases
 - Electronic noise (performance related to large dynamic range)
 - Hot/dead cells
 - Inaccessibility + eventual radiation damage
 - Event synchronization (event mixing)
 - 40 MHz operation and near deadtime-less operation

Atlas ETmiss Reconstruction and Calibration

- ETmiss Reconstruction from all calorimeter cells in [η]<5 and from muons

- ETmiss Calibration H1-style: weights depend on cell ET and Calorimeter region (talk by P.Loch)
 ⇒ Use cell energy density instead of ET (cell E/V)
 apply cryostat correction W*sqrt(Em3*TILE1)
 Minimize Resolution-Linearity Functional:
 ∑_{k=1}ⁿ (E^k_{rec}(ā) E^k_{kin})² + α∑_{k=1}ⁿ (E^k_{rec}(ā) E^k_{kin})

- avoid calibration bias: $\frac{\left\langle E_{kin}^{k} \right\rangle}{\left\langle E_{rac}^{k} \right\rangle} = 1 + \left(\frac{\sigma}{\left\langle E_{rac}^{k} \right\rangle} \right)^{2}$

- MET resolutions including noise, full readout simulation and pile-up at 2x10³³/cm²/s
 Z→ee
 - Ζ→ττ

QCD dijets

$Z' \rightarrow jj \text{ MET and } \Sigma E_T$

TeV: Top Dielectron Analysis

19

Possible Improvements (for CMS) $E_{T} = \sum_{j} \left(\vec{E}_{T} \right)_{j}^{jet} \times C_{j}^{jet} (E_{T}, \eta) + \sum_{i} \left(\vec{E}_{T} \right)_{i}^{tower} \times C_{i}^{tower} (\eta)$

- Raw MET calculation based on sum over towers
- Clustered + Unclustered Energy Calibrations
 - Type 1
 - Calibrated Jets + Uncalibrated Towers (C^{towers}=1)
 - Type 2
 - Calibrated Jets + Calibrated Towers
- Local Noise Suppression
 - Remove "Tail Catcher" (HO) from MET sum unless included in jet (similar to Coarse Hadronic use on D0)
 - T42-like noise suppession

 $Z/A \rightarrow \tau\tau$ Mass Reconstruction $m_{\tau\tau} \approx \sqrt{2(E_{\tau 1} + E_{\nu 1})(E_{\tau 2} + E_{\nu 2})(1 - \cos\theta)}$ $E_{\tau 1,2}$ - energies of measured tau-decay products $E_{v1,2}$ - (unknown) energies of two neutrinos - angle between measured tau-decay products A $\vec{p}_{x,v}^{miss} = (\vec{p}_{v1} \cdot \hat{u}_{\tau 1})_{x,v} + (\vec{p}_{v2} \cdot \hat{u}_{\tau 2})_{x,v}$ $u_{\tau 1,\tau 2}$ - directions of the measured tau-decay products $\vec{p}_{x,y}^{miss}$ - x,y-components of MET **Solve!** (if physical)

$Z \rightarrow \tau\tau$ and $A \rightarrow \tau\tau$ DC1 simulation

(Physics) ETmiss Resolution = σ (Ex(y)miss Truth - Ex(y)miss Rec $|\eta| < 5$) includes detector effect and coverage SumET = ΣE_T calo cells within $|\eta| < 5$ No Noise added ! ETmiss Resolution $\div \sqrt{\text{SumET}}$

MET resolution for qqH→qqWW→qqee

25

SUSY MET

- Typically MET ~200-300 GeV w/ Σ E_T ~1-2 TeV

Well above expected resolutions: Readiness tightly coupled to commissioning

Electronic Noise Studies

Contribution of noise w/ no cut to ETmiss resolution is about 13GeV

- \Rightarrow must be reduced
- Apply a threshold on cell energy

Noise in LArg :

Apply an Asymmetric Threshold \Rightarrow E cell > 2 * σ (el. noise)

- Threshold chosen on the basis of the two channels
 - $Z \rightarrow \tau \tau$, $bbA \rightarrow \tau \tau$:
 - optimise ETmiss resolution
 - Average values of significant quantities in event: ETmiss, SumET, Ncell... similar to no-noise case

Noise in Tile is lower :

Default Tile Zero Suppression applied: Ecell > 1.80(noise)

Local noise cancellation on event-by-event basis (K. Cranmer)

(for jets: noise-treatment combining towers with E<O with nearby E>O)

Effect of Electronic Noise

Contribution of noise no cut to ETmiss resolution is about 13 GeV Effect of noise very large for Z events ETmiss resolution ~6GeV without noise: noise cut necessary

Local Noise Suppression

- Use neighboring cells to estimate a priori probability a cell is empty: p(E=0).
- The prior is celldependent, so the method automatically picks up topology of event.
- Use Bayes' Theorem to estimate true energy given prior and measured energy
- Acts like a local noise cut

Effect from HV Dead Sectors(LAr EM)

Possible HV problems in increasing gravity: Some sectors operating at reduced voltage Some sectors with only one half gap biased Some sectors fully dead, because of shorts on both electrode sides High Voltage system granularity: Barrel: 448 sectors $\Delta\eta \times \Delta\phi = 0.2 \times 0.2$ End-caps (outer wheel): 448 sectors $\Delta\eta \times \Delta\phi = 0.1 \times 0.2$ or = 0.2×0.2 (η dep)

During HV barrel test at cold NO fully dead have been found.

HV Dead Sector Effects

Barrel and EC studied separately

Dead sectors are chosen randomly 0, 1, 2, 6, 12, 24 sectors fully dead Crack regions excluded from extraction

Maximum $\langle E_T^{miss} \rangle$ increase is $\langle 3 \rangle$ With the current limited statistics is difficult to evaluate the effect on the E_T^{miss} tails in these distributions

QCD di-jet p_T> 35 GeV

LHC: Online Monitoring (?)

Summary

- MET is undoubtedly one of the most powerful experimental tools at the LHC
 - Commissioning is known to be a great challenge
 - Experience gained from Tevatron/HERA experiments on calibration is invaluable in coping with the hadronic environment
 - Many of the Atlas/CMS calorimeters are ready and currently operated in system tests and slice tests
 - What happens between now and Day 1 may determine which experiment sees first physics first