# **Uncertainties in Sudakov Form Factors**

Stefan Gieseke



Universität Karlsruhe (TH) Institut für Theoretische Physik

- Introduction, spacelike Sudakov FF in Herwig++
- Numerical study
- Conclusion

SG, JHEP 0501 (2005) 058 [hep-ph/0412342]

#### Backward branching kinematics in Herwig++

Consider only single branching  $b \rightarrow ac$ :



Sudakov decomposition  $q_i = \alpha_i p + \beta_i n + q_{\perp i}$ . Basis  $(p, n) \parallel \text{proton direction}$ . Kinematics of shower reconstructed from

$$lpha_i = rac{lpha_{i-1}}{z}, \qquad m{q}_{\perp i} = rac{m{q}_{\perp i-1} - m{p}_{\perp i}}{z_i} \ m{p}_{\perp i}^2 = (1-z_i)^2 ilde{q}_i^2 - z_i Q_g^2 \;.$$

 $Q_g$  closely related to parton shower cutoff.

SG, Uncertainties in Sudakov FF's. Workshop TeV4LHC, BNL, 3-5 Feb 2005, \_\_\_\_

#### **Sudakov form factor for space-like branchings**

The Sudakov form factor for spacelike backward evolution of a parton a from the hard scale  $\tilde{q}_{\max}$  down to some scale  $\tilde{q}$ ,

$$S_a(\tilde{q}, \tilde{q}_{\max}; x, \tilde{q}_0) = \exp\left[-\sum_b \mathcal{I}_{ba}(\tilde{q}, \tilde{q}_{\max}; x, \tilde{q}_0)\right]$$
(1)

The sum on the right hand side (rhs) is over all possible splittings into partons of type b and

$$\mathcal{I}_{ba}(\tilde{q}, \tilde{q}_{\max}; x, \tilde{q}_0) = \int_{\tilde{q}^2}^{\tilde{q}_{\max}^2} \frac{d\tilde{q}^2}{\tilde{q}^2} \int_{z_0}^{z_1} dz \frac{\alpha_S(z, \tilde{q}^2)}{2\pi} \frac{x' f_b(x', \tilde{q}^2)}{x f_a(x, \tilde{q}^2)} P_{ba}(z, \tilde{q}^2) .$$
(2)

Choosing the argument of  $\alpha_S(Q)$  as  $Q = (1 - z_i)\tilde{q}_i$  we may now rewrite the integral (2) as

$$\mathcal{I}_{ba}(\tilde{q}, \tilde{q}_{\max}; x, Q_g) = \int_{\tilde{q}^2}^{\tilde{q}_{\max}^2} \frac{d\tilde{q}^2}{\tilde{q}^2} \int_0^1 dz \frac{\alpha_S[(1-z)\tilde{q}]}{2\pi} \frac{x' f_b(x', \tilde{q}^2)}{x f_a(x, \tilde{q}^2)} P_{ba}(z, \tilde{q}^2) \Theta(\text{P.S.}) .$$
(3)

#### Single branching type Sudakov

We only consider specific branchings  $b \rightarrow ac$ , i.e. formally

$$S_a(\tilde{q}, \tilde{q}_{\max}; x, Q_g) = \prod_b S_{ba}(\tilde{q}, \tilde{q}_{\max}; x, Q_g) .$$

And the branching probability density ("At which  $\tilde{q}$  is my next branching?")

$$\mathcal{P}_{ba}(\tilde{q}, \tilde{q}_{\max}; x, Q_g) = \mathcal{I}'_{ba}(\tilde{q}; x, Q_g) S_{ba}(\tilde{q}, \tilde{q}_{\max}; x, Q_g) \; .$$

Note that this is properly normalized as

$$\int_{\tilde{q}_{\max}}^{\tilde{q}_0} \mathcal{P}_{ba}(\tilde{q}, \tilde{q}_{\max}; x, Q_g) \, d\tilde{q} = 1 - S_{ba}(\tilde{q}_0, \tilde{q}_{\max}; x, Q_g)$$

$$= P($$
 "any branching"  $)$ 

where, of course,

$$S_{ba}( ilde{q}_0, ilde{q}_{ ext{max}};x,Q_g)=P( ext{``no branching''})$$

SG, Uncertainties in Sudakov FF's. Workshop TeV4LHC, BNL, 3–5 Feb 2005, \_\_\_\_\_

#### **Available phase space**



Limited by several factors:

• Real transverse momentum,

$$x < z < 1 + \frac{Q_g}{2\tilde{q}} - \sqrt{\left(1 + \frac{Q_g}{2\tilde{q}}\right)^2 - 1}$$

- $\tilde{q} > Q_g$
- Maybe  $\alpha_S(Q) = 0$  at low  $\tilde{q}$ . Interesting when we vary  $Q \to Q/2, 2Q$ .

quite different from available phase space in standard DGLAP or Pythia

### Numerical study

We consider

- different types of splittings.
- low and high x and  $\tilde{q}_{\max}$ .
- pdf errors from MRST/CTEQ,
- $\alpha_S(Q)$  errors from scale variation in comparison.
- NP treatment of  $\alpha_S(Q)$ .
- no study of effects beyond NLL.
- no kinematics from other generators
- strictly only first emission (vetos. . . )

We always show

- Sudakov form factor (top panel)
- Branching probability density (middle panel)
- Error information (bottom panel)

## q ightarrow qg, high $ilde{q}_{ m max}$



 $lpha_S$  uncertainty clearly dominates the error.

7

q 
ightarrow qg, low  $ilde q_{
m max}$ 



pdf error more significant for small  $ilde{q}_{\max}$  and small x.

8

g 
ightarrow gg, low  $ilde q_{
m max}$ 



Gluon also uncertain at large x.

#### g ightarrow gg, lower x, higher $ilde{q}_{ m max}$



Quite sizable at very small x. Shrinks again for larger  $\tilde{q}_{\max}$ .

 $q \rightarrow gq$ 



Unlikely type of branching. Small x more uncertain.

11

g 
ightarrow q ar q



Branching and uncertainty become more important at smaller x.

 $q \longleftrightarrow ar{q}$  (1)



Valence  $\longleftrightarrow$  sea. Valence wants to remain intact.

 $q \longleftrightarrow ar{q}$  (2)



In both cases: pdf error more sizable for sea, esp at large large x.

### **MRST** vs **CTEQ** errors (1)



Some differences in error estimate. No contratictions.

### **MRST vs CTEQ errors (2)**



MRST seem to be slightly more conservative.

### Non-perturbative $\alpha_S$



#### Consider

- Different parametrizations of  $\alpha_S$ .
- Freeze below  $Q_0 = 0.75 \,\mathrm{GeV}$

• Zero below 
$$Q_0 = 0.75 \text{ GeV}$$

### NP $\alpha_S$ effect



Modelling NP region may be important!

# $t\bar{t}$ production



- pdf uncertainties in initial state radiation.
- Sudakovs with cutoff  $Q_g$  should give estimate of probability for extra jets with  $E_T \sim Q_g$ .
- ightarrow look at high  $ilde{q}_{
  m max}$ ,  $x\sim 0.2, 0.3.$

# $tar{t}$ kinematics, $m{q} ightarrow m{q}m{g}$



pdf uncertainties small at large x (considered valence quarks).

# $tar{t}$ kinematics, g ightarrow gg



Sizable for gluons.

### Some remarks/conclusions

- Sudakov FF can be a useful tool for understanding certain effects.
- effect of pdf errors mostly small.
- BUT can be large in places  $\leftarrow t\bar{t}?$
- all compared to  $\alpha_S$  scale uncertainties.
- very sensitive to non-perturbative  $\alpha_S$  and scale variations in general (used for tuning. . . ).
- NLL effects may be interesting to look at in greater detail?!