## ME/MC Matching: Does DØ Match?

### **Michael Begel**

begel@fnal.gov

University of Rochester



for the DØ Collaboration



### **Event Generators**

- PYTHIA and HERWIG
  - Limited to  $\mathbf{2} \rightarrow \mathbf{2}$  hard processes
  - Integrated phenomenological parton shower and hadronization models
  - Difficult to produce high multiplicity events (eg, W + 5 jet)
- Generators with 2 
  ightarrow N matrix elements
  - ALPGEN and COMPHEP used by DØ
  - Add parton showers and hadronization via PYTHIA or HERWIG but double counting contributions an issue matching mechanisms alleviate this problem



## Matched Samples vs Data

### QCD

- $\Delta \phi$  distributions in dijet events
- Тор
  - Z + jets
  - W + jets
  - Heavy flavor fractions in W + jets



hep-ex/0409040

## $\phi$ **Decorrelation**

- $rac{1}{\sigma_{ ext{dijet}}} \cdot rac{d\sigma_{ ext{dijet}}}{d\Delta\phi_{ ext{dijet}}}$  is a three-jet observable
- NLO pQCD (in 3-jet prod.)
  - Good description over large range
  - Tree-level only for  $\Delta \phi_{
    m dijet} < 2\pi/3$
  - divergent at  $\Delta \phi_{
    m dijet} = \pi$
- LO pQCD (in 3-jet prod.)
  - Poor agreement
     no phase space at <  $2\pi/3$
  - divergent at  ${f \Delta}\phi_{
    m dijet}=\pi$



#### **Michael Begel**



### **Event Generator Comparisons**

Third and fourth jets are generated via parton showers

- HERWIG v6.505
  - very good description
- PYTHIA v6.225
  - poor description
  - increase  $p_T$  cut-off in the ISR parton shower PARP(67)=1.0  $\Rightarrow$  2.5 improves description





### ALPGEN Results

- Tree-level production for  $2 \rightarrow 2, 3, ..., 6$  jets
- Matched via MLM prescription
- ALPGEN + PYTHIA and ALPGEN + HERWIG yield similar results (details of parton shower model not relevant)
- Reasonable description of the data





### ALPGEN Results



#### Michael Begel

### TeV4LHC



## **MLM Matching Prescription**

- Generate parton-level configuration for a given multiplicity bin with cuts  $p_T>p_{T\,min}$  and  $\Delta R>R_{min}$
- Perform jet showering using HERWIG or PYTHIA
- Process showered event before hadronization with a jet algorithm
- Match partons and parton-shower jets:
  - a jet can only be matched to a single parton
  - Exclusive: every parton matched to a jet with  $N_{jet} = N_{parton}$
  - Inclusive: all partons matched to jets



## **MLM Matching Prescription**

Combine exclusive event samples (constant luminosity) to obtain an inclusive sample containing events with all multiplicities.

$$N=2|_{exc}+3|_{exc}+4|_{exc}+5|_{inc}$$





# **Multiplicity Mixing**

Event mixture by multiplicity bin highly dependent on matching parameter choices. This is an important consideration when creating samples.





### TeV4LHC

### Michael Begel



# **Matching Stability**

- Result does not depend on generator cuts or matching criteria
- Matched result lies between generated cross sections and has different multiplicity dependence





# **Matching in Top Samples**

- Events in top analyses must be processed through the full simulation chain including GEANT
- For technical reasons, MLM matching is only applied at the end of the chain
  - Compare matched and unmatched samples for multiple parameter choices
  - Unmatched samples have  $p_T > 8~{
    m GeV}$  and  $\Delta R > 0.4$
- The low matching efficiency requires very high initial statistics so comparisons will be made in low multiplicity bins



# Z + Jets: Leading Jet $p_T$

- *t*t̄ analysis in dimuon channel
- Two isolated muons with  $p_T > 15~{
  m GeV}$
- $75 < M_{\mu\mu} < 105~{
  m GeV}$

- Data
- PYTHIA
- MLM Matched ALPGEN



Leading Jet Pt [GeV/c]

Z inclusive



20

20

40

60

80

100 120 140

Leading Jet Pt [GeV/c]

Z + 2 jets

### Michael Begel



# Z + Jets: Leading Muon $p_T$

- *t*t̄ analysis in dimuon channel
- Two isolated muons with  $p_T > 15~{
  m GeV}$
- $75 < M_{\mu\mu} < 105~{
  m GeV}$

- Data
- PYTHIA
- MLM Matched ALPGEN





Z + 2 jets



#### **Michael Begel**

### TeV4LHC

10 20 30 40

50 60 70 80

Leading Muon Pt [GeV/c]

90 100



Data

---- MLM 20 0.4 3

...... MI M 30.0.4.3

---- MLM 20 0.7 3

...... MLM 30 0.7 3

- - Pythia

N=0

100 120

- MLM 10 0.7 3

140

PT<sub>uu</sub> [GeV/c]

\_\_\_\_\_MIM\_10.0.4.3

---- MLM 20 0.4 3

..... MLM 30 0.4 3

MIM 10.073

---- MLM 20 0.7 3

...... MLM 30 0.7 3

- --- Pythia

N=2

100

120

140 PT [GeV/c]

Data

# Z + Jets: Z $p_T$

- $t\bar{t}$  analysis in dimuon channel
- Two isolated muons with  $p_T > 15 \text{ GeV}$
- $75 < M_{\mu\mu} < 105 \, {
  m GeV}$

- Data
- PYTHIA
- MLM Matched ALPGEN

### Z inclusive

Z + 2 jets





## W + 2 Jets: Leading Jet $p_T$



### $t\bar{t}$ analysis in $\mu$ +jets channel

### TeV4LHC

**Michael Begel** 



## W + 2 Jets: $H_T$



### $t\bar{t}$ analysis in $\mu$ +jets channel

**Michael Begel** 

TeV4LHC



## W + 2 Jets: $\Delta \phi(\mu, E_T^{miss})$



### $t\bar{t}$ analysis in $\mu$ +jets channel



## **Heavy Flavor Fractions**

- The flavor composition of backgrounds is important in b-tagged analyses
- Use W + jets samples (Wj, Wc, Wbb, Wcc, with up to 5 jets) to calculate flavor fractions
  - Coalescence of two b's or two c's within a single reconstructed jet is an important contribution to the background.
- Since our MLM matched ALPGEN samples have limited statistics, we employ an ad-hoc matching procedure:
  - Flavor tag reconstructed jets using generated information
  - Exclusively match keeping 4-jet bin inclusive



### **MLM Flavor Fractions**



**Michael Begel** 

TeV4LHC



## **Ad-hoc Flavor Fractions**





## Flavor Fraction Ratios: W + 3 jets







#### **Michael Begel**

### TeV4LHC

## **Flavor Fraction Ratios: Multiplicity**



#### **Michael Begel**

### TeV4LHC



## Conclusions

- MLM matched ALPGEN describes  $\phi$  decorrelation in dijets.
- High statistics unmatched ALPGEN samples describe the W+jets and Z+jets distributions. Lower statistics MLM matched samples provide reasonable agreement.
- The ad-hoc matched W+jets flavor fractions are in fair agreement with the lower statistics MLM matched fractions.
- What's next?
  - Increase statistics in MLM matched samples
  - Investigate CKKW matching using Mrenna's W & Z samples and Sherpa



## W + 2 Jet: Unmatched ALPGEN

- $t\bar{t}$  analysis in  $\mu$ +jets channel
- Isolated high- $p_T$ muon
- $E_T^{miss} > 20~{
  m GeV}$

 $p_T^{jet} > 20~{
m GeV}$ 



### Good agreement in all multiplicity bins

**Michael Begel** 

### TeV4LHC

### unmatched W + 2 jet



## W + 2 Jet: Unmatched ALPGEN

- $t\bar{t}$  analysis in  $\mu$ +jets channel
- Isolated high- $p_T$ muon

 $\begin{array}{c|c} & E_T^{miss} > 20 \ {\rm GeV} \end{array} & \begin{array}{c} & & & & \\ & & & \\ & & p_T^{jet} > 20 \ {\rm GeV} \end{array} & \end{array} \\ \end{array}$ 



### Good agreement in all multiplicity bins

Michael Begel

### TeV4LHC

### unmatched W + 2 jet