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The Strong CP Problem

Because the strong interactions 
conserve P and CP, .
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The Standard Model does not provide a 
reason for       to be so tiny,

but a relatively small modification of the 
model  does  provide a reason …
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If a             symmetry is assumed,

relaxes to zero,
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and a light neutral pseudoscalar
particle is predicted:  the axion.



f f

a

a

γγ

610 GeVeV
a

a f
m      6     

a
a

aL g E B
fγγ γ

α
π

=         ⋅
ur ur

=  0.97   in  KSVZ model
0.36   in  DFSZ model

gγ

5fa f f
a

aL i g f f
f

γ =         



The remaining axion window
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There are two cosmic axion
populations:  hot and  cold.

When the axion mass turns on, at QCD time,
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Thermal axions
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these processes imply an axion decoupling temperature
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Cold Axions

Density

Velocity dispersion

Effective temperature
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Effective potential V(T,    )
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Axion production by vacuum realignment
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String loop 
decaying into 

axion
radiation 

simulation by 
S. Chang, C. Hagmann

and PS

see also:  
R. Battye and P. Shellard;

M. Yamaguchi, M.Kawasaki
and J. Yokoyama



Domain wall 
bounded by 

string 
decaying 
into axion
radiation



If inflation after the PQ phase transition
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If no inflation after the PQ phase transition

. cold axions are produced by vacuum 
realignment, string decay and wall decay

.
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axion miniclusters appear
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D.B. Kaplan and  K.M. Zurek (hep-ph/0507236)
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Axion dark matter is detectable
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conversion power on resonance
a γ →  
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Axion Dark Matter eXperiment



High resolution analysis of
the signal may reveal 

fine structure …



The cold dark matter particles lie on 
a 3-dimensional sheet in 

6-dimensional phase space

the physical  
density is the 
projection of 
the phase 
space sheet 
onto position 
space ( , t) = t) ( , t)r r rv v   Η(  + Δ  
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The cold dark matter particles lie on 
a 3-dimensional sheet in 

6-dimensional phase space

the physical  
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Implications:  
1. At every point in physical space, the 

distribution of velocities is discrete, each 
velocity corresponding to a particular flow 
at that location.

2.  At some locations in physical space, where 
the number of flows changes, there is a 
caustic, i.e. the density of dark matter is very 
high there. 



Phase space structure of 
spherically symmetric halos



(from Binney and Tremaine’s book)





The flow of cold collisionless particles from 
all directions in and out of a region necessarily 
forms a caustic  (Arvind Natarajan and PS, astro-ph/0510743).

Hence galactic halos have inner caustics as 
well as outer caustics.

If the initial velocity field is dominated by net 
overall rotation, the inner caustic is a ‘tricusp ring’.

If the initial velocity field is irrotational, the inner             
caustic has a ‘tent-like’ structure.



simulation by Arvind Natarajan



The caustic ring  cross-section

an elliptic umbilic catastrophe

D-4



The  Big  Flow

• density

• velocity

• velocity dispersion
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previous estimates of the total local halo density 
range from  0.5  to  0.75  10     gr/cm-24 3
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Experimental implications
• for dark matter axion searches
- peaks in the energy spectrum of microwave photons      
from                    conversion in the cavity detector

- high resolution analysis of the signal yields a more
sensitive search (with L. Duffy and ADMX collab.)

• for dark matter WIMP searches
- plateaux in the recoil energy spectrum from elastic      
WIMP collisions with target nuclei

- the flux is largest around December
(Vergados; Green; Gelmini and Gondolo; Ling, Wick &PS)

a γ→



High resolution analysis of
the signal may reveal 

fine structure …



an environmental peak,  as seen

in the 
medium

and

high
resolution
channels



ADMX  limit using high resolution (HR) channel
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Axion to photon conversion in a magnetic field

Theory

• P. S. ’83
• L. Maiani, R. Petronzio

and E. Zavattini ’86
• K. van Bibber et al. ’87
• G. Raffelt and 

L. Stodolsky, ‘88 
• K. van Bibber et al. ’89

Experiment

• D. Lazarus et al. ’92
• R. Cameron et al. ‘93
• S. Moriyama et al. ’98,  

Y. Inoue et al. ’02
• K. Zioutas et al. 04
• E. Zavattini et al. 05
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Cern Axion Solar Telescope

Decommissioned LCH test magnet

Rotating platform

3 X-ray detectors

X-ray Focusing Device

Sunset

Photon 
detectors

Sunset 
axions

Sunrise 
axions

Sunrise

Photon 
detectors





Vacuum  

Phase I Phase II

4He 3He



Detecting solar axions using Earth’s 
magnetic field

by H. Davoudiasl and P. Huber 

hep-ph/0509293

Sun Earth
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For axion masses                        , a low-Earth-orbit 
x-ray detector with an effective area of                , 
pointed at the solar core, can probe down to                    , 
in one year.  1( )
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Linearly polarized light in a constant magnetic field



Rotation
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Rotation and Ellipticity
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Experimental observation of optical rotation 
generated in vacuum by a magnetic field

the  average measured optical rotation is
(3.9     0.5)  10      rad/pass

through a  5 T,  1 m  long magnet      

by  E. Zavattini et al.  (the PVLAS collaboration)
hep-ex/0507107

±
-12



PVLAS



The PVLAS result can be interpreted 
in terms of an axion-like particle  b

inconsistent with solar axion searches, stellar evolution

descrepancy may be avoided in some models
E. Masso and J. Redondo, hep-ph/0504202
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Vacuum  
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Shining light through walls

K. van Bibber 
et al. ‘87 

A. Ringwald ‘03

P. Pugnat et al. ‘05

R. Rabadan, 
A. Ringwald and   
C. Sigurdson ‘05      
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Primakoff conversion of solar axions
in crystals on Earth
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Bragg scattering on crystal lattice

Solax, Cosme ’98
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Telescope search for cosmic axions

M.S. Bershady, M.T.Ressell
and M.S. Turner ’90

galaxy clusters
3 – 8  eV

B.D. Blout et al. ‘02
nearby dwarf galaxies 
298 – 363 eV
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Macroscopic forces mediated by axions

Theory:

J. Moody and 
F. Wilczek ’84

Experiment:

A. Youdin et al. ’96
W.-T. Ni et al. ‘96
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Conclusions

Axions solve the strong CP problem and are 
a cold dark matter candidate.

If axions exist, they are  present on Earth as 
dark matter and as particles emitted by the
Sun.

If an axion signal is found, it will provide a rich 
trove of information on the structure of the
Milky Way halo, and/or the Solar interior.
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Axion
domain walls 

bounded 
by string 

during the 
QCD phase 

transition



- the number of flows at our location in the Milky Way 
halo is of order 100

- small subhalos from hierarchical structure formation 
produce an effective velocity dispersion

but do not destroy the sheet structure in phase space
- the known inhomogeneities in the distribution of  

matter are insufficient to diffuse the flows by  
gravitational scattering

- present N-body simulations do not have enough 
particles to resolve the flows and caustics 
(see however:  Stiff and Widrow,  Bertschinger and Shirokov)
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Hierarchical clustering introduces effective
velocity dispersion

effvδ
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A shell of 
particles, part of 
a continuous 
flow.

The shell has net 
angular 
momentum.

As the shell falls 
in and out of the 
galaxy, it turns 
itself inside out.
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A caustic forms 
where the 
particles with 
the most 
angular 
momentum are 
at their closest 
approach to the 
galactic center.
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Spiral Arms    vs.   Caustic Rings of DM

• What causes the rises in the inner rotation curve of the Milky Way?

• Both spiral arms and caustic rings may contribute

• However, here are some reasons to believe that caustic rings of dark 
matter are the main cause:

- the number of rises between 3 and 8.5 kpc is approximately 10, which 
is the expected number of caustic rings, whereas only 3 spiral arms are 
known  in that range (Scutum, Sagittarius, and Local)

- the rises are sharp transitions in the rotation curve, both where they start 
and where they end.  The sharpness of the rises is consistent with the fact 
that the dark matter density diverges on caustic surfaces 

- bumps and rises are present in rotation curves at galactocentric distances
much larger than the disk radius, where there are no spiral arms seen.



ADMX  Upgrade:  replace HEMTs (2 K) 
with SQUIDs (50 mK)

In phase II of the upgrade, the 
experiment is cooled with a 

dilution refrigerator.


