Axion Searches

P. Sikivie (IAS, UF)

Joint ILIAS-CAST-CERN Axion Training

C.E.R.N.

November 30, 2005

Outline

- Introduction
- Axion cosmology
- Dark matter axion detection
- Solar axion detection
- Laser experiments
- Other methods

The Strong CP Problem

$$
L_{\mathrm{QCD}}=\ldots+\theta \frac{g^{2}}{32 \pi^{2}} G^{a}{ }_{\mu \nu} \tilde{G}^{a \mu \nu}
$$

Because the strong interactions conserve P and $\mathrm{CP}, \quad \theta \leq 10^{-10}$.

The Standard Model does not provide a reason for θ to be so tiny,
but a relatively small modification of the model does provide a reason ...

> If a $\mathrm{U}_{\mathrm{PQ}}(1)$ symmetry is assumed,
> $L=\ldots+\frac{a}{f_{a}} \frac{g^{2}}{32 \pi^{2}} G^{a}{ }_{\mu \nu} \tilde{G}^{a \mu \nu}+\frac{1}{2} \partial_{\mu} a \partial^{\mu} a+\ldots$
> $\theta=\frac{a}{f_{a}} \quad$ relaxes to zero,
and a light neutral pseudoscalar particle is predicted: the axion.

$$
m_{a} \square 6 \mathrm{eV} \frac{10^{6} \mathrm{GeV}}{f_{a}}
$$

$$
L_{a \bar{f} f}=i g_{f} \frac{a}{f_{a}} \bar{f} \gamma_{5} f
$$

$$
L_{a \gamma \gamma}=g_{\gamma} \frac{\alpha}{\pi} \frac{a}{f_{a}} \vec{E} \cdot \vec{B}
$$

$$
\begin{aligned}
& g_{\gamma}= 0.97 \text { in KSVZ model } \\
& 0.36 \text { in DFSZ model }
\end{aligned}
$$

The remaining axion window

laboratory searches
cosmology

There are two cosmic axion populations: hot and cold.

When the axion mass turns on, at QCD time,

$$
T_{1} \square 1 \mathrm{GeV}
$$

$$
\begin{gathered}
t_{1} \square 2 \cdot 10^{-7} \mathrm{sec} \\
p_{a}\left(t_{1}\right)=\frac{1}{t_{1}} \square 3 \cdot 10^{-9} \mathrm{eV}
\end{gathered}
$$

Thermal axions

these processes imply an axion decoupling temperature

$$
T_{\mathrm{D}} \square 3 \cdot 10^{11} \mathrm{GeV}\left(\frac{f_{a}}{10^{12} \mathrm{GeV}}\right)^{2} \quad \begin{aligned}
& \text { E. Masso } \\
& \text { R. Rota } \\
& \text { G. Zsembinszki }
\end{aligned}
$$

thermal axion
temperature today:

$$
T_{a}\left(t_{0}\right)=0.908 \mathrm{~K}\left(\frac{106.75}{N_{\mathrm{D}}}\right)^{\frac{1}{3}}
$$

$N_{\mathrm{D}}=$ effective number of thermal degrees of freedom at axion decoupling

Cold Axions

Density

$$
\Omega_{a} \approx\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{7}{6}}
$$

Velocity dispersion

$$
\delta \mathrm{v}_{a}\left(t_{0}\right) \square 3 \cdot 10^{-17} c\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{5}{6}}
$$

Effective temperature

$$
T_{a, \text { eff }}\left(t_{0}\right) \square 10^{-34} \mathrm{~K}\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{2}{3}}
$$

Effective potential V(T, Φ)

Axion production by vacuum realignment

$$
\begin{array}{cc}
T \geq 1 \mathrm{GeV} & T \leq 1 \mathrm{GeV} \\
n_{a}\left(t_{1}\right) \square \frac{1}{2} m_{a}\left(t_{1}\right) a\left(t_{1}\right)^{2} \square \frac{1}{2 t_{1}} f_{a}^{2} \alpha\left(t_{1}\right)^{2} \\
\rho_{a}\left(t_{0}\right) \square m_{a} n_{a}\left(t_{1}\right)\left(\frac{R_{1}}{R_{0}}\right)^{3} \propto m_{a}^{--\frac{7}{6}} \begin{array}{c}
\text { initial } \\
\text { misalignment } \\
\text { angle }
\end{array}
\end{array}
$$

(a)

(d) $=3000$

(b)

(e)

(k)

(c)

(1)

String loop decaying into axion radiation

simulation by
S. Chang, C. Hagmann
and PS
see also:
R. Battye and P. Shellard;
M. Yamaguchi, M.Kawasaki and J. Yokoyama

(a)

(c)

(e)

(b)

(d)

(f)

Domain wall bounded by

 string decaying into axion radiation
If inflation after the PQ phase transition

$$
\text { - } \Omega_{a} \square 0.25\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{7}{6}} \alpha\left(t_{1}\right)^{2} \quad \begin{aligned}
& \text { may be } \\
& \text { accidentally } \\
& \text { suppressed }
\end{aligned}
$$

$$
\because<\sqrt{a^{2}}>\square \frac{H_{I}}{2 \pi} \quad \begin{aligned}
& \text { produces } \\
& \text { isocurvature } \\
& \text { density perturbations }
\end{aligned}
$$

$$
\left.\frac{\delta \rho_{a}}{\rho_{a}}\right|_{\substack{\text { iso } \\ \text { curvature }}} \square \frac{H_{I}}{f_{a} \alpha\left(t_{1}\right)} \leq 10^{-6}{ }_{\text {CMBR constraint }}
$$

If no inflation after the PQ phase transition

- cold axions are produced by vacuum realignment, string decay and wall decay

$$
\Omega_{a} \square 0.5\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{7}{6}}
$$

- axion miniclusters appear
(Hogan and Rees, Kolb and Tkachev)

$$
M_{\mathrm{mc}} \square 10^{-13} M_{\square}\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{5}{3}} \quad l_{\mathrm{mc}} \square 10^{13} \mathrm{~cm}\left(\frac{10^{-5} \mathrm{eV}}{m_{a}}\right)^{\frac{1}{6}}
$$

D.B. Kaplan and K.M. Zurek (hep-ph/0507236)

introduce $\quad f_{a}(t)$
require $\quad f_{a}\left(t_{0}\right)>10^{9} \mathrm{GeV} \quad$ for stellar evolution

$$
\rho_{a}\left(t_{0}\right) \propto m_{a}\left(t_{0}\right) n_{a}\left(t_{1}\right)\left(\frac{R_{1}}{R_{0}}\right)^{3} \propto \frac{1}{f_{a}\left(t_{0}\right)} f_{a}^{2}\left(t_{1}\right)
$$

arrange $f_{a}\left(t_{1}\right) \ll f_{a}\left(t_{0}\right) \quad$ for cosmological energy density
allows $\quad f_{a}\left(t_{0}\right)$ much larger than $10^{12} \mathrm{GeV}$

Axion dark matter is detectable

$$
L_{a \gamma \gamma}=g_{\gamma} \frac{\alpha}{\pi} \frac{a}{f_{a}} \vec{E} \cdot \vec{B}
$$

$$
h v=m_{a} C^{2}\left(1+\frac{1}{2} \beta^{2}\right) \quad \beta=\frac{\mathrm{v}}{c} \square 10^{-3}
$$

$a \rightarrow \gamma$

conversion power on resonance

$$
\begin{aligned}
P & =\left(\frac{\alpha g_{\gamma}}{\pi f_{a}}\right)^{2} V B_{0}{ }^{2} \rho_{a} C m_{a}^{-1} Q_{L} \\
& =2 \cdot 10^{-22} \text { Watt }\left(\frac{V}{500 \text { liter }}\right)\left(\frac{B_{0}}{7 \text { Tesla }}\right)^{2}\left(\frac{C}{0.4}\right) \\
& \left(\frac{g_{\gamma}}{0.36}\right)^{2}\left(\frac{\rho_{a}}{5 \cdot 10^{-25} \mathrm{gr}^{2} \mathrm{~cm}^{3}}\right)\left(\frac{m_{a} c^{2}}{h \mathrm{GHz}}\right)\left(\frac{Q_{L}}{10^{5}}\right)
\end{aligned}
$$

search rate for $\mathrm{s} / \mathrm{n}=4$

$$
\frac{d f}{d t}=\frac{1.2 \mathrm{GHz}}{\text { year }}\left(\frac{P}{2 \cdot 10^{-22} \mathrm{Watt}}\right)^{2}\left(\frac{3 K}{T_{n}}\right)^{2}
$$

Axion Dark Matter e×periment

The cold dark matter particles lie on

 a 3-dimensional sheet in 6-dimensional phase spacethe physical
density is the projection of
the phase space sheet onto position space

$$
\overrightarrow{\mathrm{V}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\mathrm{H}(\mathrm{t}) \overrightarrow{\mathrm{r}}+\Delta \overrightarrow{\mathrm{V}}(\overrightarrow{\mathrm{r}}, \mathrm{t})
$$

The cold dark matter particles lie on

 a 3-dimensional sheet in 6-dimensional phase spacethe physical
density is the projection of
the phase space sheet
onto position space

$$
\overrightarrow{\mathrm{v}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\mathrm{H}(\mathrm{t}) \overrightarrow{\mathrm{r}}+\Delta \overrightarrow{\mathrm{v}}(\overrightarrow{\mathrm{r}}, \mathrm{t})
$$

Implications:

1. At every point in physical space, the distribution of velocities is discrete, each velocity corresponding to a particular flow at that location.
2. At some locations in physical space, where the number of flows changes, there is a caustic, i.e. the density of dark matter is very high there.

Phase space structure of spherically symmetric halos

Figure 7-22. The giant elliptical galaxy NGC 3923 is surrounded by faint ripples of brightness. Courtesy of D. F. Malin and the Anglo-Australian Telescope Board.
(from Binney and Tremaine's book)

Figure 7-23. Ripples like those shown in Figure 7-22 are formed when a numerical disk galaxy is tidally disrupted by a fixed galaxy-like potential. (See Hernquist \& Quinn 1987.)

The flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic (Arvind Natarajan and PS, astro-ph/0510743).

Hence galactic halos have inner caustics as well as outer caustics.

If the initial velocity field is dominated by net overall rotation, the inner caustic is a 'tricusp ring'.

If the initial velocity field is irrotational, the inner caustic has a 'tent-like' structure.

simulation by Arvind Natarajan

The caustic ring cross-section

D_{-4}

an elliptic umbilic catastrophe

The Big Flow

- density $\mathrm{d}_{5} \approx 1.710^{-24} \mathrm{gr} / \mathrm{cm}^{3}$ previous estimates of the total local halo density range from 0.5 to $0.7510^{-24} \mathrm{gr} / \mathrm{cm}^{3}$
- velocity $\stackrel{\mathbb{I}}{5}^{\mathbf{V}} \cong(470 \$ \pm 100 \$) \mathrm{km} / \mathrm{s}$
$\$$ in the direction of galactic rotation
$\$$ in the direction away from the galactic center
- velocity dispersion
$\delta \mathrm{v}_{5}<50 \mathrm{~m} / \mathrm{s}$

Experimental implications

- for dark matter axion searches
- peaks in the energy spectrum of microwave photons from $\quad a \rightarrow \gamma \quad$ conversion in the cavity detector
- high resolution analysis of the signal yields a more sensitive search (with L. Duffy and ADMX collab.)
- for dark matter WIMP searches
- plateaux in the recoil energy spectrum from elastic WIMP collisions with target nuclei
- the flux is largest around December
(Vergados; Green; Gelmini and Gondolo; Ling, Wick \&PS)

an environmental peak, as seen

in the medium

 and high resolution channels
ADMX limit using high resolution (HR) channel

$$
\text { for } \quad \delta \mathrm{v} \leq 12 \mathrm{~m} / \mathrm{s}\left(\frac{300 \mathrm{~km} / \mathrm{s}}{\mathrm{v}}\right)
$$

Axion to photon conversion in a magnetic field

in vacuum probability
$\begin{aligned} & p(a \longleftrightarrow \gamma)=\left.\left(\frac{\alpha g_{\gamma}}{\pi f_{a}}\right)^{2} \mathrm{~B}_{0}^{2(} \frac{\sin \frac{q_{z} L}{2}}{q_{z}}\right)^{2} \\ & m^{2}-\omega^{2}\end{aligned}$
with

$$
q_{z}=\frac{m_{a}^{2}-\omega_{\mathrm{pl}}^{2}}{2 E_{a}}
$$

Theory

- P. S. '83
- L. Maiani, R. Petronzio and E. Zavattini '86
- K. van Bibber et al. '87
- G. Raffelt and
L. Stodolsky, '88
- K. van Bibber et al. '89

Experiment

- D. Lazarus et al. '92
- R. Cameron et al. ‘93
- S. Moriyama et al. '98, Y. Inoue et al. '02
- K. Zioutas et al. 04
- E. Zavattini et al. 05

Cern Axion Solar Telescope

Detecting solar axions using Earth's magnetic field

by H. Davoudiasl and P. Huber
hep-ph/0509293

For axion masses $m_{a} \leq 10^{-4} \mathrm{eV}$, a low-Earth-orbit x-ray detector with an effective area of $10^{4} \mathrm{~cm}^{2}$, pointed at the solar core, can probe down to $M_{a} \square 10^{11} \mathrm{GeV}$, in one year.

$$
\left(L_{a \gamma \gamma}=\frac{1}{M_{a}} a \vec{E} \cdot \vec{B}\right)
$$

Linearly polarized light in a constant magnetic field

Rotation

$$
\begin{aligned}
& \vec{B}_{0} \\
& \theta \vec{A}^{\vec{A}} \\
& A_{\prime /}^{\prime}=A_{/ /}\left(1-\frac{1}{2} p-i \psi\right) \\
& A_{\perp}^{\prime}=A_{\perp} \\
& p=4 \frac{B_{0}{ }^{2} \omega^{2}}{M_{a}{ }^{2} m_{a}{ }^{4}} \sin ^{2}\left(\frac{m_{a}{ }^{2} L}{4 \omega}\right) \\
& \frac{\alpha g_{\gamma}}{\pi f_{a}}=g_{a \gamma \gamma}=\frac{1}{M_{a}} \\
& \alpha=-\frac{1}{4} p \sin (2 \theta)
\end{aligned}
$$

Rotation and Ellipticity

A
$A^{\prime}=A_{/ /}\left(1-\frac{1}{2} p-i \psi\right)$
$A_{\perp}^{\prime}=A_{\perp}$

$$
p=4 \frac{B_{0}{ }^{2} \omega^{2}}{M_{a}{ }^{2} m_{a}{ }^{4}} \sin ^{2}\left(\frac{m_{a}{ }^{2} L}{4 \omega}\right)
$$

$$
\frac{\alpha g_{\gamma}}{\pi f_{a}}=g_{a \gamma \gamma}=\frac{1}{M_{a}}
$$

$$
\psi=2 \frac{B_{0}{ }^{2} \omega^{2}}{M_{a}{ }^{2} m_{a}{ }^{4}}\left[\frac{m_{a}{ }^{2} L}{2 \omega}-\sin \left(\frac{m_{a}{ }^{2} L}{2 \omega}\right)\right]
$$

Experimental observation of optical rotation generated in vacuum by a magnetic field

by E. Zavattini et al. (the PVLAS collaboration) hep-ex/0507107

the average measured optical rotation is

$$
(3.9 \pm 0.5) 10^{-12} \mathrm{rad} / \mathrm{pass}
$$

through a $5 \mathrm{~T}, 1 \mathrm{~m}$ long magnet

PVLAS

The PVLAS result can be interpreted in terms of an axion-like particle b

$$
\begin{gathered}
L_{b \gamma \gamma}=\frac{1}{M_{b}} b \vec{E} \cdot \vec{B} \\
1 \cdot 10^{5} \mathrm{GeV} \leq M_{b} \leq 6 \cdot 10^{6} \mathrm{GeV} \\
0.7 \mathrm{meV} \leq m_{b} \leq 2 \mathrm{meV}
\end{gathered}
$$

inconsistent with solar axion searches, stellar evolution
descrepancy may be avoided in some models
E. Masso and J. Redondo, hep-ph/0504202

Shining light through walls

K. van Bibber
et al. '87
A. Ringwald ‘03
P. Pugnat et al. '05
R. Rabadan,
A. Ringwald and
rate $\propto \frac{1}{f_{a}{ }^{4}}$
C. Sigurdson '05

Primakoff conversion of solar axions in crystals on Earth

Solax, Cosme '98
Ge

DAMA ‘01

$$
E_{a}=\text { few } \mathrm{keV}
$$

Nal (100 kg)
Bragg scattering on crystal lattice
$4.0-4.5$ hev

1 day
E.0-E E EV

7.5-0.0 mer

Chunges eveny day

Telescope search for cosmic axions

$$
\begin{aligned}
& \text { M.S. Bershady, M.T.Ressell } \\
& \text { and M.S. Turner '90 } \\
& \text { galaxy clusters } \\
& \text { 3-8 eV } \\
& \text { B.D. Blout et al. ‘02 } \\
& \text { nearby dwarf galaxies } \\
& \text { 298-363 } \mu \mathrm{eV} \\
& g_{a \gamma \gamma}<1.0 \cdot 10^{-9} \mathrm{GeV}^{-1} \\
& \Gamma(a \rightarrow 2 \gamma)=\frac{1}{0.67 \cdot 10^{25} \mathrm{sec}}\left(\frac{m_{a}}{\mathrm{eV}}\right)^{5}\left(\frac{g_{\gamma}}{0.36}\right)^{2}
\end{aligned}
$$

Macroscopic forces mediated by axions

$$
L_{a \bar{f} f}=g_{f} \frac{m_{f}}{f_{a}} a \bar{f}\left(i \gamma_{5}+\theta_{f}\right) f \quad \begin{aligned}
& \text { Theory: } \\
& \text { J. Moody and } \\
& \text { F. Wilczek '84 }
\end{aligned}
$$

forces coupled to the f spin density
forces coupled to the f number density
A. Youdin et al. '96
W.-T. Ni et al. '96

Conclusions

Axions solve the strong CP problem and are a cold dark matter candidate.

If axions exist, they are present on Earth as dark matter and as particles emitted by the Sun.

If an axion signal is found, it will provide a rich trove of information on the structure of the Milky Way halo, and/or the Solar interior.

PVLAS

Avion

 domain walls bounded by string during the QCD phase transition- the number of flows at our location in the Milky Way halo is of order 100
- small subhalos from hierarchical structure formation produce an effective velocity dispersion

$$
\delta \mathrm{v}_{\text {eff }} \leq 30 \mathrm{~km} / \mathrm{s}
$$

but do not destroy the sheet structure in phase space

- the known inhomogeneities in the distribution of matter are insufficient to diffuse the flows by gravitational scattering
- present N -body simulations do not have enough particles to resolve the flows and caustics (see however: Stiff and Widrow, Bertschinger and Shirokov)

Hierarchical clustering introduces effective velocity dispersion

$\delta \mathrm{v}_{\mathrm{eff}} \leq 30 \mathrm{~km} / \mathrm{s}$

A shell of particles, part of a continuous flow.

The shell has net angular momentum.

As the shell falls in and out of the galaxy, it turns itself inside out.
a)

c)

b)

d)

e)
f)

A caustic forms where the particles with the most angular momentum are at their closest approach to the galactic center.

Spiral Arms vs. Caustic Rings of DM

- What causes the rises in the inner rotation curve of the Milky Way?
- Both spiral arms and caustic rings may contribute
- However, here are some reasons to believe that caustic rings of dark matter are the main cause:
- the number of rises between 3 and 8.5 kpc is approximately 10 , which is the expected number of caustic rings, whereas only 3 spiral arms are known in that range (Scutum, Sagittarius, and Local)
- the rises are sharp transitions in the rotation curve, both where they start and where they end. The sharpness of the rises is consistent with the fact that the dark matter density diverges on caustic surfaces
- bumps and rises are present in rotation curves at galactocentric distances much larger than the disk radius, where there are no spiral arms seen.

ADMX Upgrade: replace HEMTs (2 K) with SQUIDs (50 mK)

