ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva

# Astrophysical Axion Bounds

Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

#### Globular Clusters of the Milky Way





http://www.dartmouth.edu/~chaboyer/mwgc.html

## Globular clusters on top of the FIRAS 2.2 micron map of the Galaxy



#### **Basic Argument**

Flux of weakly interacting particles

- Invisible axions have very small mass
- Emission from stellar plasma not suppressed by threshold effects (analogous to neutrinos)
- New energy-loss channel
- Back-reaction on stellar properties and evolution

Star

- What are the emission processes?
- What are the observable consequences?

#### Hydrogen burning: Proton-Proton Chains



ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

#### **Neutrinos from Thermal Plasma Processes**



Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

### **Axion Properties**

| Gluon coupling<br>(Generic property) | $L_{aG} = \frac{\alpha_{S}}{8\pi f_{a}} G\tilde{G}a$                                                                                                               | a – – – – Lung G          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Mass                                 | $m_a = \frac{0.6 \text{eV}}{f_a / 10^7 \text{GeV}} \approx \frac{m_\pi f_\pi}{f_a}$                                                                                |                           |
| Photon coupling                      | $L_{a\gamma} = -\frac{g_{a\gamma}}{4} F \tilde{F} a = g_{a\gamma} \vec{E} \cdot \vec{B} a$ $g_{a\gamma} = \frac{\alpha}{2\pi f_a} \left(\frac{E}{N} - 1.92\right)$ | a ann y                   |
| Pion coupling                        | $L_{a\pi} = \frac{C_{a\pi}}{f_a f_{\pi}} (\pi^0 \pi^+ \partial_{\mu} \pi^- + \dots) \partial^{\mu} a$                                                              | $\pi \longrightarrow \pi$ |
| Nucleon coupling<br>(axial vector)   | $L_{aN} = \frac{C_N}{2f_a} \overline{\Psi}_N \gamma^{\mu} \gamma_5 \Psi_N \partial_{\mu} a$                                                                        | a < N<br>N                |
| Electron coupling<br>(optional)      | $L_{ae} = \frac{C_e}{2f_a} \overline{\Psi}_e \gamma^{\mu} \gamma_5 \Psi_e \partial_{\mu} a$                                                                        | aCe                       |

#### **Axion or Graviton Emission Processes in Stars**

| Nucleons  | $\frac{C_{N}}{2f_{a}}\overline{\Psi}_{N}\gamma_{\mu}\gamma_{5}\Psi_{N}\partial^{\mu}a$ | Nucleon<br>Bremsstrahlung         | $ \begin{array}{c} a\\ N_1 & & \\ & & \\ & & \\ & & \\ N_2 & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ |
|-----------|----------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photons   | C <sub>γ</sub> $\frac{\alpha}{2\pi f_a} \vec{E} \cdot \vec{B} a$                       | Primakoff                         | γ~~~~~~a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Electrons | $\frac{C_e}{2f_a} \overline{\Psi}_e \gamma_\mu \gamma_5 \Psi e \partial^\mu a$         | Compton                           | <sup>γ</sup> ~~, <sup>a</sup><br>e <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                        | Pair<br>Annihilation              | $e^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                        | Electromagnetic<br>Bremsstrahlung | e <sup>-</sup> e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Primakoff Process in the Sun

| Interaction<br>Lagrangian                                    | $L_{a\gamma} = -\frac{1}{4}g_{a\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}a = g_{a\gamma}\vec{E}\cdot\vec{B}a$                                                                                                                                                  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primakoff<br>cross section                                   | $\frac{d\sigma_{\gamma \to a}}{d\Omega} = \frac{g_{a\gamma}^2 Z^2 \alpha}{8\pi} \frac{\left \vec{k}_a \times \vec{k}_{\gamma}\right ^2}{\left \vec{k}_a - \vec{k}_{\gamma}\right ^4} \qquad \begin{array}{c} \gamma & \gamma \\ \chi \\ Ze \end{array}$ |
| Conversion rate<br>(screening effects,<br>no nuclear recoil) | $\Gamma_{\gamma \to a} = \frac{g_{a\gamma}^2 T k_S^2}{32\pi} \left[ \left( 1 + \frac{k_S^2}{4E^2} \right) \ln \left( 1 + \frac{4E^2}{k_S^2} \right) - 1 \right]$                                                                                        |
| Screening scale<br>(non-relativistic<br>non-degenerate)      | $\kappa_{S}^{2} = \frac{k_{S}^{2}}{4T^{2}} = \frac{\pi\alpha}{T^{3}} n_{B} \left( Y_{e} + \sum_{j} Z_{j}^{2} Y_{j} \right) \begin{array}{c} \text{Sun}  \kappa_{S}^{2} \approx 12 \\ \text{HB Star } \kappa_{S}^{2} \approx 2.5 \end{array}$            |

 G. Raffelt, "Astrophysical axion bounds diminished by screening effects", Phys. Rev. D 33 (1986) 897 (Part of GR's Ph.D. Thesis)

• Consistent with results from FTD methods, see Altherr, Petitgirard & del Rio Gaztelurrutia, Astropart. Phys. 2 (1994) 175

### **Energy-Loss Rate of the Sun**

Conversion rate  

$$\begin{aligned}
\Gamma_{\gamma \to a} &= \frac{g_{a\gamma}^2 T \kappa_S^2}{32\pi} \left[ \left( 1 + \frac{\kappa_S^2}{4E^2} \right) \ln \left( 1 + \frac{4E^2}{\kappa_S^2} \right) - 1 \right] \\
&\approx g_{10}^2 \ 10^{-15} \text{s}^{-1} \text{ for few keV-energy photons (Sun)} \\
g_{10} &= \frac{g_{a\gamma}}{10^{-10} \text{GeV}^{-1}} \end{aligned}$$
Energy-Loss Rate  

$$\begin{aligned}
Q &= \int \frac{2d^3 \bar{\kappa}_\gamma}{(2\pi)^3} \frac{\Gamma_{a \to \gamma} E}{e^{E/T} - 1} = \frac{g_{a\gamma}^2 T^7}{4\pi} F(\kappa_S^2) \\
F(\kappa_S^2) &= \frac{\kappa_S^2}{2\pi^2} \int_0^\infty dx \left[ (x^2 + \kappa_S^2) \ln \left( 1 + \frac{x^2}{\kappa_S^2} \right) - x^2 \right] \frac{x}{e^{x} - 1}} \\
\end{aligned}$$
Solar Axion  
La &= g\_{10}^2 \ 1.85 \times 10^{-3} L\_{sun}
\end{aligned}

#### **Solar Axion Spectrum**



Average energy  $\langle E \rangle = \overline{E}$ For  $\alpha = 2$  the fit is identical with a Maxwell-Boltzmann distribution Determine A,  $\alpha$ , and  $\overline{E}$  such that the total axion flux,  $\langle E \rangle$  and  $\langle E^2 \rangle$ are exactly reproduced With 2004 solar model  $\overline{E} = 4.196 \text{ keV}$  $\alpha = 2.481$ 

 $\frac{d\Phi_a}{dE} = A\left(\frac{E}{\overline{E}}\right)^{\alpha} e^{-(\alpha+1) E/\overline{E}}$ 

"Power-law" fit

#### Search for Solar Axions





- Tokyo Axion Helioscope (Results since 1998)
- CERN Axion Solar Telescope (CAST) (Results since 2003)

Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, ...)

# Basics of Stellar Evolution

Georg Raffelt, Max-Planck-Institut für Physik, München, German

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

#### **Equations of Stellar Structure**

Assume spherical symmetry and static structure (neglect kinetic energy) Excludes: Rotation, convection, magnetic fields, supernova-dynamics, ...



#### Literature

- Clayton: Principles of stellar evolution and nucleosynthesis (Univ. Chicago Press 1968)
- Kippenhahn & Weigert: Stellar structure and evolution (Springer 1990)

**Radius from center** Pressure Newton's constant Mass density Integrated mass up to r Luminosity (energy flux) Local rate of energy generation [erg/g/s]  $\varepsilon = \varepsilon_{\text{nuc}} + \varepsilon_{\text{grav}} - \varepsilon_{v}$ Opacity  $\kappa^{-1} = \kappa_{\nu}^{-1} + \kappa_{c}^{-1}$ **Radiative opacity** κγ  $\kappa_{\gamma}\rho = \langle \lambda_{\gamma} \rangle_{\text{Rosseland}}^{-1}$ **Electron conduction** ĸc

## Virial Theorem and Hydrostatic Equilibrium

| Hydrostatic equilibrium                                                       | $\frac{dP}{dr} = -\frac{G_N M_r \rho}{r^2}$                                                |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Integrate both sides                                                          | $\int_{0}^{R} dr 4\pi r^{3} P' = -\int_{0}^{R} dr 4\pi r^{3} \frac{G_{N}M_{r}\rho}{r^{2}}$ |  |  |
| L.h.s. partial integration<br>with P = 0 at surface R                         | $-3\int_{0}^{R} dr 4\pi r^2 P = E_{grav}^{tot}$                                            |  |  |
| Classical monatomic gas: $P = \frac{2}{3}U$<br>(U density of internal energy) | $U^{tot} = -\frac{1}{2} E_{grav}^{tot}$                                                    |  |  |
| Average energy of single<br>"atoms" of the gas                                | $\langle E_{kin} \rangle = -\frac{1}{2} \langle E_{grav} \rangle$ Virial Theorem           |  |  |
|                                                                               | Most important tool to understand self-gravitating systems                                 |  |  |

#### Dark Matter in Galaxy Clusters



Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

A gravitationally bound system of many particles obeys the virial theorem

$$2\langle E_{kin} 
angle = -\langle E_{grav} 
angle$$

$$2\left\langle \frac{mv^2}{2} \right\rangle = \left\langle \frac{G_N M_r m}{r} \right\rangle$$

$$\left< v^2 \right> \approx G_N M_r \left< r^{-1} \right>$$

Velocity dispersion from Doppler shifts and geometric size

#### **Total Mass**

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

#### Virial Theorem Applied to the Sun

 $\langle E_{kin} \rangle = -\frac{1}{2} \langle E_{grav} \rangle$ 

Virial Theorem

## Approximate Sun as a homogeneous sphere with

Mass  $M_{sun} = 1.99 \times 10^{33} g$ Radius  $R_{sun} = 6.96 \times 10^{10} cm$ 

Gravitational potential energy of a proton near center of the sphere

$$\left\langle \mathsf{E}_{\mathsf{grav}} \right\rangle = -\frac{3}{2} \frac{\mathsf{G}_{\mathsf{N}}\mathsf{M}_{\mathsf{sun}}\mathsf{m}_{\mathsf{p}}}{\mathsf{R}_{\mathsf{sun}}} = -3.2 \text{ keV}$$

Thermal velocity distribution

$$\langle \mathsf{E}_{\mathsf{kin}} \rangle = \frac{3}{2} \mathsf{k}_{\mathsf{B}} \mathsf{T} = -\frac{1}{2} \langle \mathsf{E}_{\mathsf{grav}} \rangle$$

Estimated temperature

T = 1.1 keV



Central temperature from standard solar models  $T_c = 1.56 \times 10^7 K$ = 1.34 keV

#### **Thermonuclear Reactions and Gamow Peak**

Maxwell-Boltzmann Tunneling **Coulomb repulsion prevents nuclear** distribution probability reactions, except for Gamow tunneling e-1/E1/2 e-E/kl **Tunneling probability**  $p \propto E^{-1/2}e^{-2\pi\eta}$ With Sommerfeld parameter  $\eta = \left(\frac{m}{2F}\right)^{1/2} Z_1 Z_2 e^2$ kT En ΔE Parameterize cross section with 20 astrophysical S-factor LUNA Dwarakanath and Winkler (1971) Krauss et al. (1987)  $S(E) = \sigma(E) E e^{2\pi \eta(E)}$ 15  $^{3}\text{He} + ^{3}\text{He} \rightarrow ^{4}\text{He} + 2p$ q [MeV 10 bare nuclei ഗ shielded nuclei 5 010 100 1000 Gamow peak LUNA Collaboration, nucl-ex/9902004 E [keV]

### Main Nuclear Burnings

| <ul> <li>Hydrogen burning 4p + 2e<sup>-</sup> → <sup>4</sup>He + 2v<sub>e</sub></li> <li>Proceeds by pp chains and CNO cycle</li> <li>No higher elements are formed because no stable isotope with mass number 8</li> <li>Neutrinos from p → n conversion</li> <li>Typical temperatures: 10<sup>7</sup> K (-1 keV)</li> </ul>                                                                                                                                       | <ul> <li>Each type of burning occurs<br/>at a very different T but a<br/>broad range of densities</li> <li>Never co-exist in same<br/>location</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Helium burning<br><sup>4</sup> He + <sup>4</sup> He + <sup>4</sup> He $\leftrightarrow$ <sup>8</sup> Be + <sup>4</sup> He $\rightarrow$ <sup>12</sup> C<br>"Triple alpha reaction" because <sup>8</sup> Be unstable,<br>builds up with concentration ~ 10 <sup>-9</sup><br><sup>12</sup> C + <sup>4</sup> He $\rightarrow$ <sup>16</sup> O<br><sup>16</sup> O + <sup>4</sup> He $\rightarrow$ <sup>20</sup> Ne<br>Typical temperatures: 10 <sup>8</sup> K (~10 keV) | $ \begin{array}{c}             Ig T_c & \Psi = 0 + 4 \\             9 & C - MS & 3.5 & 1 & 0.8 \\             He - MS & 10 & 3 & 1 & 0.5 \\             8 & 0.5 & 0.3 \\             50 & 10 & 5 & 2 \\             H - MS & 2 & 0.5 & 0.3 \\             For the second se$ |
| Carbon burning<br>Many reactions, for example<br>${}^{12}C + {}^{12}C \rightarrow {}^{23}Na + p$ or ${}^{20}Ne + {}^{4}He$ etc<br>Typical temperatures: 10 <sup>9</sup> K (~100 keV)                                                                                                                                                                                                                                                                                | $7 - 0.5 \\ 0.2 \\ 0.085 \\ 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 \\ 1g(\rho_c/\mu_e)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Hydrogen Exhaustion



#### Burning Phases of a 15 Solar-Mass Star

|        |          |                          |                         |                           | L <sub>27</sub> [ | 10 <sup>4</sup> L <sub>sun</sub> ] |                      |
|--------|----------|--------------------------|-------------------------|---------------------------|-------------------|------------------------------------|----------------------|
| Burnir | ng Phase | Dominant<br>Process      | T <sub>C</sub><br>[keV] | ρ <sub>C</sub><br>[g/cm³] | Ŷ                 | L <sub>v</sub> /L <sub>y</sub>     | Duration<br>[years]  |
|        | Hydrogen | $H \rightarrow He$       | 3                       | 5.9                       | 2.1               | —                                  | 1.2×10 <sup>7</sup>  |
|        | Helium   | $He \rightarrow C, O$    | 14                      | 1.3×10 <sup>3</sup>       | 6.0               | 1.7 ×10 <sup>-5</sup>              | 1.3×10 <sup>6</sup>  |
|        | Carbon   | $C \rightarrow Ne, Mg$   | 53                      | 1.7×10 <sup>5</sup>       | 8.6               | 1.0                                | 6.3 ×10 <sup>3</sup> |
|        | Neon     | $Ne \rightarrow O, Mg$   | 110                     | 1.6×10 <sup>7</sup>       | 9.6               | 1.8 ×10 <sup>3</sup>               | 7.0                  |
|        | Oxygen   | $0 \rightarrow Si$       | 160                     | 9.7×10 <sup>7</sup>       | 9.6               | 2.1×10 <sup>4</sup>                | 1.7                  |
|        | Silicon  | $Si \rightarrow Fe$ , Ni | 270                     | 2.3×10 <sup>8</sup>       | 9.6               | 9.2×10 <sup>5</sup>                | 6 days               |

#### **Self-Regulated Nuclear Burning**



#### Virial Theorem

$$\left< E_{kin} \right> = -\frac{1}{2} \left< E_{grav} \right>$$

#### **Small Contraction**

- $\rightarrow$  Heating
- $\rightarrow$  Increased nuclear burning
- $\rightarrow$  Increased pressure
- $\rightarrow$  Expansion

Additional energy loss ("cooling")  $\rightarrow$  Loss of pressure

- $\rightarrow$  Contraction
- $\rightarrow$  Heating
- → Increased nuclear burning

Hydrogen burning at a nearly fixed T  $\rightarrow$  Gravitational potential nearly fixed:  $G_NM/R \sim constant$  $\rightarrow R \propto M$  (More massive stars bigger)

#### **Modification of Stellar Properties by Axion Emission**

Assume that some small perturbation (e.g. axion emission)

leads to "homologous" modification of stellar structure, i.e.

every point is mapped to a new position r' = yr**Requires power-law relations for constitutive relations** • Nuclear burning rate  $\epsilon \propto \rho^n T^m$ Homologous • Mean opacity  $\kappa \propto \rho^{S} T^{t}$ changes of stellar structure Implies for other quantities: • Density  $\rho'(r') = y^{-3}\rho(r)$ • Pressure  $p'(r') = y^{-4}p(r)$ • Temperature gradient  $dT'(r')/dr' = y^{-2} dT(r)/dr$ Modified nuclear burning rate  $\varepsilon \propto (1 - \delta_x) \varepsilon_{nuc}$ Assume Kramers opacity law s = 1, t = -3.5n = 1, m = 4 - 6Impact of small Hydrogen burning exotic energy loss  $\frac{\delta R}{R} = \frac{-2\delta_{\chi}}{2m+5} \qquad \frac{\delta L_{\gamma}}{L_{\gamma}} = \frac{\delta_{\chi}}{2m+5} \qquad \frac{\delta T}{T} = \frac{\delta_{\chi}}{2m+5}$ 

### Degenerate Stars ("White Dwarfs")

| Assume T very small<br>$\rightarrow$ No thermal pressure<br>$\rightarrow$ Electron degeneracy is pressure source                                           | Inverse mass-radius relationship for degenerate stars: $R \propto M^{-1/3}$                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pressure ~ Momentum density x Velocity<br>• Electron density $n_e = p_F^3/(3\pi^2)$<br>• Momentum $p_F$ (Fermi momentum)<br>• Velocity $y \propto p_F/m_e$ | $R = 10,500 \text{ km} \left(\frac{0.6 \text{ M}_{\text{sun}}}{\text{M}}\right)^{1/3} (2\text{Y}_{\text{e}})^{5/3}$ (Y <sub>e</sub> electrons per nucleon) |  |  |  |
| • Pressure $P \propto p_F^5 \propto \rho^{5/3} \propto M^{5/3}R^{-5}$<br>• Density $\rho \propto MR^{-3}$<br>(Stellar mass M and radius R)                 | For sufficiently large mass,<br>electrons become relativistic<br>• Velocity = speed of light<br>• Pressure                                                 |  |  |  |
| Hydrostatic equilibrium<br>$\frac{dP}{dr} = -\frac{G_N M_r \rho}{r^2}$                                                                                     | $P \propto p_F^4 \propto \rho^{4/3} \propto M^{4/3} R^{-4}$<br>No stable configuration                                                                     |  |  |  |
| With dP/dr ~ –P/R we have approximately $P \propto G_N M \rho R^{-1} \propto G_N M^2 R^{-4}$                                                               | Chandrasekhar mass limit<br>M <sub>Ch</sub> = 1.457 M <sub>sun</sub> (2Y <sub>e</sub> ) <sup>2</sup>                                                       |  |  |  |

#### **Degenerate Stars**



Inverse mass-radius relationship for degenerate stars:  $R \propto M^{-1/3}$ 



#### **Stellar Collapse**



#### **Stellar Collapse**



#### **Giant Stars**



#### Globular Clusters of the Milky Way





http://www.dartmouth.edu/~chaboyer/mwgc.html

# Globular clusters on top of the FIRAS 2.2 micron map of the Galaxy



#### **Color-Magnitude Diagram for Globular Clusters**



Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W.Harris, 2000)

#### **Color-Magnitude Diagram for Globular Clusters**



Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W.Harris, 2000)

### **Planetary Nebulae**

Hour Glass Nebula



Eskimo Nebula

Planetary Nebula NGC 3132

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

# Globular-Cluster Limit on Axion-Photon Coupling

Georg Raffelt, Max-Planck-Institut für Physik, München, German

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

#### **Color-Magnitude Diagram for Globular Clusters**



Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W.Harris, 2000)

#### Helium-Burning Lifetime of Horizontal-Branch Stars



Number ratio of HB-Stars/Red Giants in 15 galactic globular clusters (Buzzoni et al. 1983)

#### Helium-burning lifetime established within ±10%

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

### **Globular-Cluster Limit on Axion-Photon Coupling**



#### Limits on Axion-Photon-Coupling


# Model-Dependence of Axion-Photon Coupling

Translating limits on the axion-photon coupling into limits on the Peccei-Quinn scale or axion mass depends on model uncertainties

| Light quark<br>mass ratio | $z = \frac{m_u}{m_d} = 0.3 - 0.7$<br>z = 0.56 "Canonical value"                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass                      | $m_a = \frac{f_{\pi}m_{\pi}}{f_a} \frac{\sqrt{z}}{1+z}$ $\frac{\sqrt{z}}{1+z} = 0.42 - 0.49$                                                                                                                                                                                                                                                                                                                                                                                      |
| Axion-photon<br>coupling  | $L_{a\gamma} = -\frac{g_{a\gamma}}{4} FFa = g_{a\gamma}\vec{E} \cdot \vec{B}a \qquad a \dots g_a \qquad g_a \qquad Gluon anomaly coefficient N$ $g_{a\gamma} = \frac{\alpha}{2\pi f_a} \left( \frac{E}{N} - \frac{2}{3} \frac{4 + z}{1 + z} \right) \qquad a \dots g_a \qquad g_a \qquad Gluon anomaly coefficient N$ $Electromagnetic anomaly coefficient E$ $E/N = 0 (KSVZ), E/N = 8/3 (DFSZ), or many other \dots$ But requires fine-tuning to strongly suppress $g_{a\gamma}$ |

## **Astrophysical Axion Bounds**



# Free Streaming vs Trapping of New Particles



Strong effect on stellar structure when  $\lambda_{\chi} \gtrsim \lambda_{\gamma}$ 

Strongest effect of new particles when mean free path ~ stellar radius

# Supernova 1987A Limits on the Axion-Nucleon Coupling

org Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

# Sanduleak -69 202

Stalt May Dissol Institut for De

# Supernova 1987A 23 February 1987

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerlan

#### **Stellar Collapse**



#### **Stellar Collapse**



# **Stellar Collapse and Supernova Explosion**



ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

# **Stellar Collapse and Supernova Explosion**

#### **Newborn Neutron Star**



Gravitational binding energy  $E_{\rm b} \approx 3 \times 10^{53} \text{ erg} \approx 17\% \text{ M}_{\text{SUN}} \text{ c}^2$ 

# This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy

Neutrino luminosity  $L_v \approx 3 \times 10^{53} \text{ erg } / 3 \text{ sec}$   $\approx 3 \times 10^{19} L_{SUN}$ While it lasts, outshines the entire visible universe

## Neutrino Signal of Supernova 1987A



Kamiokande (Japan) Water Cherenkov detector Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union) Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

#### Angular Distribution of SN 1987A Neutrinos



Main detection reaction  $\overline{v}_e + p \rightarrow n + e^+$ 

is essentially isotropic for the relevant energies.

Expect only a fraction of an event from forward-peaked reaction

 $v + e^- \rightarrow e^- + v$ 

Observed signal compatible with isotropy only at approx. 0.1% CL, but no alternative known

#### **Energy Distribution of SN 1987A Neutrinos**



### **Trigger Efficiencies at the Detectors**



Fiducial volumes for SN 1987A detection Kamiokande II 2140 tons water (1.43×10<sup>32</sup> protons) IMB 6800 tons water  $(4.6 \times 10^{32} \text{ protons})$ **BST** 200 tons scintillator (1.88×10<sup>31</sup> protons)

#### Interpreting SN 1987A Neutrinos



# The Energy-Loss Argument



14

# The Energy-Loss Argument in the Trapping Limit

Neutrino sphere

Mean-free-path of new particles less than geometric dimension of star

- New particles are more important for energy transfer than neutrinos (Energy transfer & mfp)
- Efficiency of energy transfer must be less than that of neutrinos or else speed up cooling of PNS, again shortening the observed SN 1987A signal

**Particle** 

diffusion

### **Axion Emission from a Nuclear Medium**



Difficulties include:

- Realistic nucleon-nucleon interaction potential (even in vacuum)
- Many-body effects (effective mass, spin-spin correlations ...)
- Axion couplings in the nuclear medium
- Multiple-scattering effects: Frequency of NN collisions exceeds typical axion energy τ<sub>coll</sub> < ω<sup>-1</sup> Expect LPM-type destructive interference effects

#### **Axion Emission from a Nuclear Medium**



# **Properties of the Dynamical Structure Function**

| Nucleon spin-density autocorrelation function                    | $S(\omega,k) = \frac{4}{3n_{B}} \int_{-\infty}^{+\infty} dt e^{i\omega t} \left\langle \sigma(t,k) \cdot \sigma(0,-k) \right\rangle$                  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normalization, ignoring many-body correlations                   | $\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} S(\omega, k) = \frac{1}{n_B} \int \frac{2d^3p}{(2\pi)^3} f_p(1 - f_{p+k})$                             |
| Detailed balancing                                               | $S(-\omega,k) = e^{-\omega/T}S(\omega,k)$ consequence of<br>non-commuting $\sigma(t)$<br>at different times                                           |
| Symmetric form                                                   | $\overline{S}(\omega,k) = \frac{S(-\omega,k) + S(\omega,k)}{2} \rightarrow S(\omega,k) = \frac{2\overline{S}(\omega,k)}{1 + e^{-\omega/T}}$           |
| Long-wavelength limit $(k \rightarrow 0)$                        | $\overline{S}(\omega) = \frac{4}{3} \int_{-\infty}^{+\infty} dt e^{i\omega t} \left\langle \frac{s(t) \cdot s(0) + s(0) \cdot s(t)}{2} \right\rangle$ |
| Is Fourier transform of single-nucleon spin correlation function | $\overline{R}(t) = \frac{4}{3} \left\langle \frac{s(t) \cdot s(0) + s(0) \cdot s(t)}{2} \right\rangle$                                                |

#### **Spin Relaxation Rate**

A spin immersed in a bath of scatterers with spin-dependent forces relaxes exponentially for uncorrelated kicks (Markov chain)  $\overline{R}(t) = e^{-\Gamma t}$ with  $\Gamma$  the "spin relaxation rate", leading to the Fourier transform  $\overline{S}(\omega) = \frac{2\Gamma}{\omega^2 + \Gamma^2} \quad \mathbf{7}$ Lorentzian structure function, includes multiple scattering effects Ν Ν Nucleon-Nucleon  $S(\omega)$  $\overline{S}(\omega) = 2\Gamma/\omega^2$ Bremsstrahlung Generic form for single collisions & small energies Identify coefficient  $\Gamma$  from bremsstrahlung calculation with spin relaxation rate ω

#### **Axion Emission Rate**



#### **Axion Emission Rate**



#### **SN 1987A Axion Limits**



Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

## **Astrophysical Axion Bounds**



# Structure-Formation Limits on Hot Dark-Matter Axions

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland

#### Dark Energy 73% (Cosmological Constant)

#### Ordinary Matter 4% (of this only about 10% luminous)

Dark Matter 23% Neutrinos 0.1–2%

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerlan

#### **Formation of Structure**

Structure forms by gravitational instability of primordial density fluctuations

**Smooth** 



#### Formation of Structure

Structure forms by gravitational instability of primordial density fluctuations

**Smooth** 



A fraction of hot dark matter suppresses small-scale structure

# **Neutrino Free Streaming – Transfer Function**



### **Power Spectrum of Cosmic Density Fluctuations**



# **Recent Cosmological Limits on Neutrino Masses**

|                                                         | Σm <sub>v</sub> /eV<br>(limit 95%CL) | Data / Priors                                                |
|---------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|
| Ichikawa, Fukugita, Kawasaki<br>2004 [astro-ph/0409768] | 2.0                                  | WMAP                                                         |
| Tegmark et al. 2003<br>[astro-ph/0310723]               | 1.8                                  | WMAP, SDSS                                                   |
| Hannestad 2003<br>[astro-ph/0303076]                    | 1.01                                 | WMAP, CMB, 2dF, HST                                          |
| Spergel et al. (WMAP) 2003<br>[astro-ph/0302209]        | 0.69                                 | WMAP, CMB, 2dF, HST, $\sigma_8$                              |
| Barger et al. 2003<br>[hep-ph/0312065]                  | 0.75                                 | WMAP, CMB, 2dF, SDSS, HST                                    |
| Crotty et al. 2004<br>[hep-ph/0402049]                  | 1.0<br>0.6                           | WMAP, CMB, 2dF, SDSS<br>& HST, SN                            |
| Hannestad 2004<br>[hep-ph/0409108]                      | 0.65                                 | WMAP, SDSS, SN la gold sample,<br>Ly-a data from Keck sample |
| Seljak et al. 2004<br>[astro-ph/0407372]                | 0.42                                 | WMAP, SDSS, Bias,<br>Ly-a data from SDSS sample              |

# Sensitivity Forecasts for Future LSS Observations

| Lesgourgues, Pastor                                    | Planck & SDSS                                              | $\Sigma m_{v} > 0.21 \text{ eV detectable}$<br>at $2\sigma$                                 |
|--------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| a Perotto,<br>hep-ph/0403296                           | Ideal CMB & 40 x SDSS                                      | $\Sigma m_{v} > 0.13 \text{ eV detectable}$<br>at $2\sigma$                                 |
| Abazajian & Dodelson<br>astro-ph/0212216               | Future weak lensing<br>survey 4000 deg <sup>2</sup>        | σ(m <sub>v</sub> ) ~ 0.1 eV                                                                 |
| Kaplinghat, Knox & Song,<br>astro-ph/0303344           | CMB lensing                                                | $\sigma(m_v) \sim 0.15 \text{ eV}$ (Planck)<br>$\sigma(m_v) \sim 0.044 \text{ eV}$ (CMBpol) |
| Wang, Haiman, Hu,<br>Khoury & May,<br>astro-ph/0505390 | Weak-lensing selected sample of > 10 <sup>5</sup> clusters | σ(m <sub>v</sub> ) ~ 0.03 eV                                                                |

# Extending the Mass Bound to Other Low-Mass Particles

Assume a generic hot dark matter particle that was in thermal equilibrium at some cosmological epoch

- Internal particle degrees of freedom (e.g. spin states) g<sub>X</sub>
- Mass m<sub>X</sub>
- Effective number of thermal degrees of freedom at freeze-out g\*



Perform maximum likelihood analysis for different choices of  $g_{\chi}$  and  $g_{\star}$  to derive cosmological limit on  $m_{\chi}$ 

#### **Axion Freeze-Out**



# **Structure-Formation Exclusion Range for Axions**



# Mass Limits on Hot Dark Matter Axions and Neutrinos



Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

ILIAS Axion Training, 30 Nov-2 Dec 2005, CERN, Geneva, Switzerland
## Lee-Weinberg Curve for Neutrinos and Axions



## **Astrophysical Axion Bounds**

