Detecting Solar Axions Using Earth's Magnetic Field

Hooman Davoudias

University of Wisconsin – Madison

Based on: H. D. and P. Huber, hep-ph/0509293

+ Weakly-coupled light pseudo-scalars:

- Strong CP problem; QCD: $\theta_{QCD} \le 10^{-10}$. Peccei, Quinn (1977)
- Cosmology.
- Ubiquitous in String Theory.

★ Axion-photon coupling at low energies:

$${\cal L}_{a\gamma} = - {1\over 4} \, g_{a\gamma} \, a F_{\mu
u} ilde{F}^{\mu
u}$$

 $g_{a\gamma}^{-1} \sim (\pi/lpha) f_a$, f_a axion scale, and $lpha \simeq 1/137$.

+ Plasma axion-emission, <u>Primakoff</u> effect:

• Solar axion flux: $\langle \omega_a \rangle \simeq 4.2$ keV.

van Bibber, McIntyre, Morris, Raffelt (1989)

- Reverse: axion \rightarrow photon in transverse *B*-filed. Sikivie (1983)
- \Rightarrow Solar axions convert to X-rays: $\langle \omega_{\gamma} \rangle \simeq 4.2$ keV.

Axion-photon conversion: $p_{\gamma}(L) = rac{1}{2} \left(g_{a\gamma} B/q ight)^2 \left[1 - \cos(qL) ight]$

Raffelt, Stodolsky (1988) van Bibber, McIntyre, Morris, Raffelt (1989)

L: path length; l = 2π/q: oscillation length.
q = m_a²/(2ω_a). (vacuum propagation).

• m_a : axion mass

The CAST Experiment:

Most recent solar axion bound on $g_{a\gamma}$.

B = 9.0 T; Length = 9.26 m. $A = 2 \times 14.5 \text{ cm}^2$ (two pipes). S. Andriamonje *et al.* [CAST Collaboration], Phys. Rev. Lett. **94**, 121301 (2005).

$$p_{\gamma}(L) \approx (g_{a\gamma}BL/2)^2$$
 (for $q \ll 1/L$).
Figure of merit: $\mathcal{F} \equiv (BL)^2$.

Key Observation

- Earth's magnetic field: $B_\oplus \simeq 0.3$ G.
- $B_\oplus \propto 1/r^3$
- $L \ll R_{\oplus} \approx 6400 \text{ km} \Rightarrow B_{\oplus} \simeq \text{Constant.}$
- We will use $L_\oplus \simeq 1000$ km.
- Earth as the conversion region:
- $\Rightarrow \mathcal{F}_{\oplus} \simeq 900 \ \mathrm{T}^2 \ \mathrm{m}^2.$
- $\mathcal{F}(CAST) \simeq 7000 T^2 m^2$.
- $\mathcal{F}_{\oplus} pprox (1/8) \mathcal{F}(\mathsf{CAST})$

Conversion of high energy cosmic axions in B_\oplus :

Zioutas, Thompson, Paschos (1998).

 \therefore A low-earth-orbit X-ray telescope with $A \gg 10A_{\rm CAST}$ can outperform CAST ($m_a \lesssim 10^{-4}$ eV).

Geomagnetic Conversion of Solar Axions to X-rays (GECOSAX)

Detection:

Using the Earth to shield from solar X-rays. \Rightarrow Collect data on the night side.

Numerical inputs:

•
$$B_{\oplus} = 3 \times 10^{-5}$$
 T, $\omega_a = 4$ keV, $g_{a\gamma} = 10^{-10}$ GeV⁻¹.

• $L_{\oplus} = 600 \, \text{km} < R_{\oplus}/10 \Rightarrow m_a \le 10^{-4} \, \text{eV}.$ Note: Above ~ 150 km, atmosphere negligible. $\Rightarrow p_{\gamma}(L_{\oplus}) \approx 10^{-18}.$

Solar-axion flux at Earth:
$$\Phi_a = 3.67 \times 10^{11} \left(\frac{g_{a\gamma}}{10^{-10} \,\text{GeV}^{-1}} \right)^2 \,\text{cm}^{-2} \,\text{s}^{-1}$$

X-ray flux at $L_{\oplus} \simeq 600 \, {\rm km}$:

$$\Phi_{\gamma}(L_{\oplus}) \approx 4 \times 10^{-7} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}.$$

Q: Can we observe this flux?

A: Yes!

Initial estimate based on the RXTE X-ray telescope:

1996-1999: $\delta t \simeq 2.5 \times 10^4$ s of dark earth data. Background: 3 counts s⁻¹. $A_{\text{eff}} \sim$ 7000 cm², $E_{\gamma} \in$ [2, 10] keV.

RXTE Sensitivity:
$$\sqrt{N}_B/(\delta t A_{\rm eff}) \sim 1.5 \times 10^{-6}$$
 cm⁻² s ⁻¹.

Suzaku X-ray Mission: Recent Data

Suzaku team: $A_{eff} \sim 300 \text{ cm}^2$ over 2-7 keV.

Courtesy of Suzaku team

With 3×10^5 s of data, $g_{a\gamma} < 10^{-10}$ GeV⁻¹ at 4σ could have been possible.

Concluding Remarks

- Axions: theoretically well-motivated; important potential role in Nature.
- Promising discovery path: solar axion detection in magnetic fields.
- **GECOSAX:** efficient due to large magnetized volume.
- <u>Present</u> orbiting X-ray telescopes can search for GECOSAX.
- X-ray signatures are distinct:
- Direction of the solar core (3').
- Black-body distributed with $T \simeq 1.1$ keV.
- Flux variations: annual (Earth-Sun distance) and orbital (B_{\oplus}) .

• For $m_a \leq 10^{-4}$ eV, orbital observation of GECOSAX significantly more powerful than current laboratory solar axion experiments.

Unambiguous Discovery: Viewing the Solar Core in X-rays through the Earth!

