WIMPs, KK axions and DRIFT

Axions, CERN-1105-Neil Spooner

Direction sensitive WIMP detectors

Axions, CERN-1105-Neil Spooner

Low background low pressure TPC

negative ion drift with CS₂ rediscovered by Jeff Martoff (Temple)

How many WIMPs to see the halo

AIM: how many WIMPs to see the halo?

[B. Morgan, A. Green, N. Spooner - Astro-ph/040804]

Model for realistic (advanced) detectors

- 40 Torr CS₂
- 1 kVcm⁻¹ drift field
- \bullet 200 μm resolution
- 10 cm drift
- SRIM2003 recoil scattering and diffusion

Vectorial Statistics:

Axial Statistics:

Recoil directions estimated as principal axis $\pm \underline{r}$ of *moment analysis of pixel signals*.

Recoil sense known(unknown): 10-20(100-400) events needed to reject isotropy at 95% confidence in 95% of experiments.

primary limitations: (1) recoil scattering and diffusion (2) head-tail

40 keV S recoil in 40 Torr CS₂

DRIFT II (a,b,c....) - multi-module

first steps to cheap modules

• Aim

WIMP sensitivity of 10⁻⁶ pb per module per year

Basic Design

Modular... n (3-4) \times 1m³ fiducial vol, NITPCs

- Back-to-back drift vols & dual MWPC readout
- Vertical planes, warp adjust strongback MWPCs
- 3d track reconstruction (anode, grid and z-drift) (resolution: $\Delta x = 2mm$, $\Delta y = 0.1mm$, $\Delta z = 0.1mm$)
- Low noise DAQ (few keV S-recoil threshold)
- low leak vessel design (<10⁻⁵T.L.s⁻¹).
- Simple gas system (various pressure & gas mixtures)

DRIFT IIa construction

vacuum vessel

MWPC, 1m²

assembly of field cage

DAQ

DRIFT IIa installation at Boulby (1.1km depth)

Entrance

JIF CS2 sensor

Axions, CERN-1105-Neil Spooner

DRIFT II shielded and running

Aug-Nov 2005

Continuous, stable, shielded operation since Aug 17th 05.

- 6 kg.days of unshielded data from engineering runs with ~3 kg.days partially-shielded.
- 12 kg.days of shielded data so far (~80 days continuous operation at 90% live time).

Long-term running and detector stability

Track analysis

Axions, CERN-1105-Neil Spooner

Gammas rejection basics

1000 Wires grouped down to 8 Channels

GRID: 12bit 5MHz sampling PCI ADCs.

Internal 64 fold grouping & Amptek preamplification - 8 channels per MWPC

X & Y alpha vetos read into GRID DAQ

ANODE: ditto

Slow Control: 120 chan Agilent data acq unit.

DRIFT IIa underground data

Axions, CERN-1105-Neil Spooner

DRIFT IIa data analysis

Solar Kaluza-Klein axions

- Axions arise from Peccei-Quinn solution to strong CP problem in QCD (see other talks....)
- In theories with n extra dimensions, axions may be able to propagate and acquire so-called Kaluza-Klein excitations
- Such Kaluza-Klein axions produced in the Sun may be trapped into Earthcrossing orbits
- Decay of these trapped Kaluza-Klein axions to pairs of back-back photons may be observable in a suitable detector such as a Time Projection Chamber (TPC) like DRIFT
- Prospects for such a detection are determined by:
 - Axion-photon coupling constant $g_{a\gamma\gamma}$
 - The local axions number density n_0
 - Volume of detector (m³)
 - Background gammas (1-10 keV)

B. Morgan et al. Astrop. Phys 23 (2005) 287,

KK axion lifetime

Solar KK axion mass spectrum

Basis for an experimental search:

- B. Morgan, N. Spooner et al, D. Hoffmann et al., K. Zioutas...
- B. Morgan et al. Astrop. Phys 23 (2005) 287,
- Leads to differential decay spectrum:

$$\frac{dR}{dm_a} = \frac{g_{a\gamma\gamma}^2}{64\pi} n_0 m_a^3 f(m_a)$$

 $R = (2.5 \times 10^{11} m^{-3} day^{-1}) \left(\frac{g_{a\gamma\gamma}}{GeV^{-1}}\right)^2 \left(\frac{n_0}{m^{-3}}\right) \longrightarrow \text{Typical rate ~ 1 m^{-3} day^{-1} (~keV \text{ events})}$

Result for trapped axions in orbits around Sun $g_{a\gamma\gamma} = 9.2 \times 10^{-14} \, GeV^{-1}$ $n_0 = 10^{14} \, m^{-3}$ (local number density depends on $g_{a\gamma\gamma}$)

Mass spectrum for solar axions trapped in orbits around the sun

L. Di Lella and K. Zioutas, Astrop. Phys., 19 (2003) 145

Low pressure TPC is ideal

Decay in space so best to have large volume ~ m³

Low pressure allows separation of back to back gammas

Signal and γ background MCs

γ background prediction (DRIFT, 160 Torr CS₂)

Issues

Random gamma coincidences Coincident backgrounds:

Compton scatters

~2 keV S K-shell x-ray

CS₂ conclusion

- Good resolution on R (low diffusion)
- Good low gamma sensitivity
- Poor ∆T (gas is slow)
- Poor K pair background

Nevertheless background rates ~0.1 m⁻³ day⁻¹ are possible for m_a of 6-20 keV several orders of magnitude less than for solid state detectors

KK axion limit prediction (preliminary)

BASIC LIMIT - Add Pb shielding until vessel background dominates (10 cm for 1 ppb)

POSSIBLE IMPROVEMENT (lots of ideas)

- alternative gases to avoid K- events: (a) P10 but poor R, (b) CF₄ but longer MFPs...
- larger volumes, higher pressure, purer materials, better analysis

Is DRIFT sensitive enough to the x-rays?

Energy calibration performed using automated Fe55 exposures.

Noise reduction using Fourier transform & box-car smoothing

Probably yes

e.g. uncut low threshold data (1000 events)

But, grouped readout limits spatial sensitivity to projection on the xy plane

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Conclusion - next steps - DRIFT II b, c..

DRIFT IIa running for WIMPs!

Low energy threshold and spatial resolution may allow identification of back to back gammas from KK axions

Needs upgrade: gamma shielding less channel grouping

Meanwhile DRIFT IIb due for U/G installation Feb 2006:

-triggerless DAQ -lower threshold -lower-cost

Bulk micromegas provides route to better PSD...