Large extra dimensions and Large extra dimensions and Large extra dimensions and CAST

 $\overline{0}$ $\overline{0}$

Biljana Lakić Rudjer Bošković Institute, Zagreb

Joint ILIAS-CAST-CERN Axion Training, 30.11. -02.12.2005, CERN 02.12.2005, CERN

*Talk based on: R. Horvat, M. Krčmar, B. Lakić, Phys. Rev. D 69, 125011 (2004)

 \triangleright Introduction on extra dimensions \triangleright Axions in large extra dimensions \triangleright CAST as a probe of large extra dimensions \triangleright Conclusions

Extra dimensions Extra dimensions

a possible solution to the hierarchy problem in particle physics (the large separation between the weak scale M_{W} ~10³ GeV and the Planck scale M_{Pl} ~10¹⁹ GeV)

general ideas:

- \blacksquare *n* extra spatial dimensions in which gravity propagates
- **-** the Standard Model particles confined to our 3-dim. subspace

 \blacksquare the hierarchy generated by the geometry of additional dimensions

 \blacksquare testable predictions at the TeV scale

Extra dimensions Extra dimensions

Three scenarios:

- Large extra dimensions (Arkani-Hamed, Dimopoulos, Dvali) \blacksquare the extra dimensions are compactified (a large radius of compactification) and the geometry of the space is flat ^D Warped dimensions (Randall, Sundrum) \blacksquare a large curvature of the extra dimensions \blacksquare TeV⁻¹ sized extra dimensions \blacksquare the Standard Model particles may propagate in the bulk

Large extra dimensions (LED) Large extra dimensions (LED)

• the relation between the Planck scale and the fundamental higher-dimensional scale M_D

 $\overline{M}_{\rm Pl} \approx \overline{M}_{D}{(R M_{D})}^{n/2}$

R is the compactification radius

• if M_D ∼1 TeV, *R* ranges from ∼mm to ~10 fm for $n = 2–6$ (1/*R* ranges from ~10⁻⁴ eV to ~10 MeV)

• the Standard Model fields constrained to the brane

• the bulk graviton expands into a Kaluza-Klein (KK) tower of spin-2 states which have masses $\sqrt{\vec{k}^2/R^2}$, where k labels the KK excitation level \rightarrow

Large extra dimensions (LED) Large extra dimensions (LED)

Constraints on the radius of the extra dimensions, for the case of two-flat dimensions of equal radii:

• direct tests of Newton's law $\frac{1}{r^2} \rightarrow \frac{1}{r^{2+n}}$ for $r < R$

 $\frac{1}{r^2} \rightarrow \frac{1}{r^{2+n}}$ for $r <$

 $R < 0.15$ mm

• collider signals (direct production of KK gravitons)

R < 210 – 610 μ^m

• astrophysics (limits depend on technique and assumption)

supernova cooling supernova cooling *^R* < 90 – 660 nm

- neutron stars $R < 0.2 - 50$ nm

 \triangleright axions could also propagate in $\delta \leq n$ extra dimensions. Why? \triangleright axions are scalars under the Standard Model gauge group \triangleright to avoid a new hierarchy problem $M_{\rm w}$ vs. $f_{\rm PQ}$ \triangleright interesting predictions:

- \geq a tower of Kaluza-Klein states
	- \triangleright the lowest KK excitation may be identified with the ordinary PQ axion and specifies the coupling strength of each KK state to matter
	- \geq a given source (the Sun) will emit axions of each mode up to the kinematic limit

 \triangleright the axion mass may decouple from the Peccei-Quinn scale ! (in 4-dimensional theory $m_{\text{PO}} \sim 1/f_{\text{PO}}$)

Biljana Lakić **Die Biljana Lakić Die Biljana Lakić III** Asion Training, CERN Axion Training, CERN

• the relation between the higher-dimensional and 4-dimensional scale $(M_s$ is a fundamental mass scale, e.g. a type I string scale)

$$
f_{\rm PQ}^2 \approx \bar{f}_{\rm PQ}^2 M_s^{\delta} R^{\delta}
$$

 $\frac{R^2}{PQ} \approx \bar{f}_{PQ}^2 M_S^{\delta} R^{\delta}$ *For gravity* $M_{Pl} \approx M_D (R M_D)^{n/2}$

• a Kaluza-Klein decomposition of the axion field (upon compactification of one extra spatial dimension)

$$
a(x^{\mu}, y) = \sum_{n=0}^{\infty} a_n(x^{\mu}) \cos\left(\frac{ny}{R}\right)
$$

• an effective 4-dimensional Lagrangian

$$
L_{\rm eff} = L_{\rm QCD} + \frac{1}{2} \sum_{n=0}^{\infty} (\partial_{\mu} a_n)^2 - \frac{1}{2} \sum_{n=1}^{\infty} \frac{n^2}{R^2} a_n^2 + \frac{\xi}{f_{\rm PQ}} \frac{g^2}{32\pi} \left(\sum_{n=0}^{\infty} r_n a_n \right) F_a^{\mu\nu} \widetilde{F}_{\mu\nu a}
$$

The mass matrix:

$$
M^{2} = m_{\text{PQ}}^{2} \begin{pmatrix} 1 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \cdots \\ \sqrt{2} & 2 + y^{2} & 2 & 2 & \cdots \\ \sqrt{2} & 2 & 2 + 4y^{2} & 2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad y = \frac{1}{m_{\text{PQ}}R}
$$

K. R. Dienes, E. Dudas, T. Gherghetta, Phys. Rev. D 62, 105023 (2000)

The eigenvalues λ : the solutions to the transcendental equation

$$
\pi R \lambda \cot(\pi R \lambda) = \frac{\lambda^2}{m_{\rm PQ}^2}
$$

The axion linear superposition:

$$
\pi R \lambda \cot(\pi R \lambda) = \frac{\lambda^2}{m_{\rm PQ}^2} \qquad a' \equiv \frac{1}{\sqrt{N}} \sum_n r_n a_n = \frac{1}{\sqrt{N}} \sum_{\lambda} \widetilde{\lambda}^2 A_{\lambda} \hat{a}_{\lambda}
$$

$$
A_{\lambda} \equiv \frac{\sqrt{2}}{\widetilde{\lambda}} \left(\widetilde{\lambda}^2 + 1 + \frac{\pi^2}{y^2} \right)^{-1/2} \qquad \widetilde{\lambda} \equiv \frac{\lambda}{m_{\rm PQ}}
$$

Biljana Lakić **Die Biljana Lakić Analysis die antiker analysis die version** Joint ILIAS-CAST-CERN Axion Training, CERN

- the solutions to the transcendental equation for a) the axion zero mode; b) the first KK excitation

1) if
$$
m_{PQ} \ll \frac{1}{R}
$$
 KK axion masses are $m_{PQ}, \frac{1}{R}, \frac{2}{R}, ...$
\n2) if $m_{PQ} \gg \frac{1}{R}$ KK axion masses are $\frac{1}{2R}, \frac{3}{2R}, \frac{5}{2R}, ...$
\n• the lightest axion mass
\neigenvalue
\n
$$
m_a \approx \min\left(m_{PQ}, \frac{1}{2R}\right)
$$
\n• the masses of KK
\nexcitations are separated
\nby $\approx 1/R$
\n $\frac{1}{R}$
\n $m_a \approx \min\left(m_{PQ}, \frac{1}{2R}\right)$
\n $m_a \approx \min\left(m_{PQ}, \frac{1}{2R}\right)$

CAST: Physics Physics

Principle of the Axion helioscope Sikivie, Phys. Rev. Lett 51 (1983)

• the expected number of photons

$$
N_{\gamma} = \int \frac{d\Phi_a}{dE_a} P_{a\to\gamma} S t \, dE_a
$$

• the differential axion flux at the Earth

$$
\frac{d\Phi_a}{dE_a} = 4.02 \times 10^{10} \left(\frac{g_{\text{a\gamma\gamma}}}{10^{-10} \text{GeV}^{-1}} \right)^2 \frac{(E_a/\text{keV})^3}{e^{E_a/1.08 \text{ keV}} - 1} \text{ cm}^{-2} \text{s}^{-1} \text{keV}^{-1}
$$

K. van Bibber *et al.*, Phys. Rev. D 39 (1989)

CAST: Physics CAST: Physics

• the conversion probability in the gas (in vacuum: $\Gamma = 0$, $m_{\gamma}=0$)

$$
P_{a\to\gamma} = \left(\frac{Bg_{a\gamma\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2} \cos(qL)\right]
$$

L=magnet length, Γ=absorption coeff.

CAST as a probe of LED CAST as a probe of LED

 $N_{\gamma i}^{KK} = \frac{2\pi^{\delta/2}}{\Gamma(\delta/2)} R^{\delta} \int_{0}^{\infty} dm m^{\delta-1} N_{\gamma i}(m) G(m)$ $N_{\gamma i}(m) = \int \frac{d\Phi_a(m)}{dE_a} S t_i P_{a\to\gamma i}(m)$ 1) limits on the coupling constant (we use $R \le 0.15$ mm $\Rightarrow 1/R = 1.3 \times 10^{-3}$ eV) • the estimated number of X-rays at the pressure P_i $2 - 11 - 17 - 1$ $1.1\,$ 2 Γ 2 $10 \cap$, \mathbf{v} -1 $\frac{d\Phi_a(m)}{dE_a} = 4.20 \times 10^{10} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{GeV}^{-1}}\right)^2 \frac{E_a p^2}{e^{E_a/1.1} - 1} (1 + 0.02m) \text{ cm}^{-2} \text{s}^{-1} \text{keV}^{-1}$ • the differential axion flux in the case of massive KK axions $n = 2$ since CAST is sensitive to axion masses up to ~ 0.8 eV

 $G(m)$ arises from the mixing between the KK axion modes

$$
G(m) = \widetilde{m}^4 \left(\widetilde{m}^2 + 1 + \frac{\pi^2}{y^2} \right)^{-2} \qquad \widetilde{m} \equiv \frac{m}{m_{PQ}} , y \equiv \frac{1}{m_{PQ}R}
$$

Biljana Lakić **Die Biljana Lakić Die Biljana Lakić III** Asion Training, CERN Axion Training, CERN

CAST as a probe of LED CAST as a probe of LED

a) δ =1: ~10³ KK states up to 0.8 eV b) $\delta = 2$: ~10⁶ KK states up to 0.8 eV

 \geq at most an order of magnitude stringent limit

 \triangleright the axion zero mode mass $m_a \approx 1/2R^{-1}$ = 6.6×10⁻⁴ eV

 \triangleright strong decrease in sensitivity on $g_{a\gamma\gamma}$ for $m_{\text{PO}}R>>1$

CAST as a probe of LED CAST as a probe of LED

2) limits on the compactification radius *R*

• due to the coherence condition, CAST could be sensitive to particular KK states

• two signals while changing the pressure of the gas

a) $m_a = 1/(2R) \Rightarrow m_1 = 3/(2R) \approx 0.8 \text{ eV} \Rightarrow R \approx 370 \text{ nm}$ *b)* $m_a = m_{\text{PO}}$ $\Rightarrow m_1 = 1/R \approx 0.8 \text{ eV}$ $\Rightarrow R \approx 250 \text{ nm}$

Biljana Lakić **Die Biljana Lakić Die Biljana Lakić III** Asian Training, CERN Axion Training, CERN

Conclusions Conclusions

We have explored the potential of the CAST experiment for observing KK axions coming from the solar interior.

 \triangleright In theories with two extra dimensions (with $R=0.15$ mm) a sensitivity on $g_{a\gamma}$ improves at most one order of magnitude. In addition, the axion mass is decoupled from f_{PO} and is set by the compactification radius *R*.

 \triangleright The CAST experiment may be sensitive to particular KK axions. With a requirement to have at least two signals while changing the pressure of the gas, we have found that CAST is capable of probing (two) large extra dimensions with a compactification radius R down to around 250 nm if m_{PO} < 1/(2*R*), and down to around 370 nm if m_{PO} > 1/(2*R*).

 O O

CAST: Physics CAST: Physics Predicted exclusion plot Predicted exclusion plot

• vacuum in the magnet bores: $m < 2.3 \times 10^{-2}$ eV (during 2003) and 2004) and 2004)

• ⁴He gas pressure increased from 0 - 6 mbar: $\rm m$ < 0.26 eV

 \cdot ³He gas pressure increased from 6 - 60 mbar: <u>m < 0.83 eV</u>

To start in late 2005