θ-term and strong CP problem

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\bar{q}(i \not D-M) q \\
& +\theta \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{a} \widetilde{G}^{a \mu \nu}+\cdots
\end{aligned}
$$

θ-term is CP-violating

Physical effects depend on the combination $\bar{\theta}=\theta+\operatorname{Arg} \operatorname{Det} M$

$$
d_{n} \sim \frac{e}{m_{n}} \bar{\theta} \frac{m_{u} m_{d}}{m_{u}+m_{d}} \frac{1}{\Lambda_{\mathrm{QCD}}}
$$

$d_{n}<0.63 \times 10^{-25} e \mathrm{~cm}$

Chiral symmetry $U(1)_{P Q}$ allows to rotate $\bar{\theta}$ away
Spontaneous breaking of anomalous global symmetry

(PGB)
(QCD)- Axion model has large breaking scale f_{a}

Interactions

Mass
is small

Experiments looking for axions use coupling to two photons

$$
c_{\gamma} \frac{\alpha}{\pi} \frac{1}{f_{a}} \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta}
$$

Light bosons coupled to $\gamma \gamma$

Consider ϕ light PS or \boldsymbol{S} coupled to $\gamma \gamma$

$\mathcal{L}_{\phi \gamma \gamma}=\frac{1}{8} g_{\phi \gamma \gamma} \phi \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta}=g_{\phi \gamma \gamma} \phi \vec{E} \vec{B}$
two (independent) properties: $\begin{array}{cc} \\ & m \\ \text { mass } & g_{\phi \gamma \gamma} \equiv \frac{1}{M} \\ \text { coupling }\end{array}$
(Current) axion experiments sensitive to $\gamma \gamma$ coupling

- Other GB or PGB

Family, Lepton num. sym. \Rightarrow familons, majorons MetaSM theories $\Rightarrow 0^{-}, 0^{+}$

- Even for the axion, there might be extra contributions to mass, altering relation

Interesting imlications, cf. SN dimming, ...

and their relatives

Eduard Massó
(UAB/IFAE)
with: Carla Biggio
Javier Redondo
Francesc Rota
Gabriel Zsembinszki
and: Tony Grifols Ramon Toldrà
and: Andreas Ringwald Jörg Jäckel
Fuminobu Takahashi

OUTLINE OF THE TALK

Strong CP, PQ, axions, light bosons with $\phi \gamma \gamma$
$\phi \gamma \gamma$ coupling: consequences / constraints
Recent results: CAST \& PVLAS; the conflict
Ideas to evade astrophysical constraints
*
Light bosons as Dark Matter
Planck-induced symmetry breaking and PGB DM
*
Bounds on forces mediated by light bosons

Consequences of $\phi \gamma \gamma$

Primakov-like processes

allows $\gamma \rightarrow \phi$ and $\phi \rightarrow \gamma$

(cf. Primakov process for $\pi^{0} \gamma \gamma$)

- $\phi \gamma$ mixing in external B-field

$$
\mathcal{L}_{\mathrm{int}}=\mathcal{L}_{\phi \gamma \gamma} \Rightarrow g_{\phi \gamma \gamma} \phi \vec{\epsilon} \cdot \vec{B}
$$

strength of photon polarization interaction

Consequences of $\phi \gamma \gamma$

Interaction states \neq Propagation states

$$
\begin{aligned}
\left|\phi^{\prime}\right\rangle & =\cos \theta|\phi\rangle-\sin \theta|\gamma\rangle \\
\left|\gamma^{\prime}\right\rangle & =\sin \theta|\phi\rangle+\cos \theta|\gamma\rangle
\end{aligned}
$$

Sikivie
Raffelt, Stodolsky
$\begin{aligned} & \text { transition probability } \\ & \text { after traveling a distance } \mathbf{L}\end{aligned} \quad P(\gamma \rightarrow \phi)=\frac{1}{4} g_{a \gamma}^{2} B_{T}^{2} L^{2}$

Coherent effect
Condition *

$$
\left|k_{\gamma}-k_{\phi}\right| L \ll 2 \pi \quad \Rightarrow \quad \frac{L m^{2}}{E}<1 \quad \underset{\text { (in vacuum) }}{E=\text { energy }}
$$

$*\left(\right.$ Valid when $g_{\phi \gamma \gamma} B \ll L$ and $\left.m_{\phi}^{2} / 2 E \ll E\right)$

Constraints on $\phi \gamma \gamma$

I. Particle physics

EM,Toldrà
Klebart, Rabadan
2. Astrophysical
3. Cosmological

They push (very much) terrestrial limits

Astrophysical (Energy Loss Arguments)

Production
Primakov in the stellar plasma

Emission Weakly interacting particles leave the star

New energy loss channel accelerates star evolution
Time-scale observation constrains exotic energy drain from the star :

$$
M>2 \times 10^{10} \mathrm{GeV}(m<10 \mathrm{keV})
$$

Horizontal
Branch Stars

Also SN87A $\quad M>10^{9} \mathrm{GeV}(m<50 \mathrm{MeV})$

Gamma-rays from SN

Part of the ϕ-flux produced in the SN core can be (partially) converted back to photons in galactic B

Limits on γ-flux by GRS
at the time of observation of $\Rightarrow M>10^{12} \mathrm{GeV}$ ν-flux in 02.1987

$$
\left(m<10^{-9} \mathrm{eV}\right)
$$

In future galactic SN, we might get a signal since we have now more sensitive gamma-rays detectors in satellites

Recent experimental results (small masses)

CAST (CERN)

PVLAS (INFN)

Sitges Cine Festival (Horror and Fantastic)

Get inspiration for next experiments !

CAST search

Helioscope

Sikivie

Idea: Sun is source of axion-like particles.
Use B to convert them back to photons (of few keV , X-rays)

Comparable to stellar bounds

NO signal
(at the moment)

$$
\Rightarrow \quad \begin{aligned}
& M>0.9 \times 10^{10} \mathrm{GeV} \\
& (m<0.02 \mathrm{eV})
\end{aligned}
$$

K. Zioutas et al. PRL 94 (2005)

Comments: Past helioscopes; Crystal search (Bragg-Primakov)

ROTATION of polarization plane

of laser in B field

$$
B \simeq 5 T, L \simeq 1 \mathrm{~m}, N \simeq 4.410^{5}
$$

$$
\alpha=(3.9 \pm 0.5) 10^{-12} \mathrm{rad} / \mathrm{pass}
$$

A possible interpretation :

$$
\vec{\epsilon} \cdot \vec{B}=\epsilon_{\|} B
$$

Selective absorption (dichroism)

Scale: $110^{5}<M<610^{5} \mathrm{GeV} \quad M=g_{\phi \gamma \gamma}^{-1}$
Mass: $\quad 0.7<m<2 \mathrm{meV}$

Even if particle interpretation is correct. this particle would nOT be the standard axion

PVLAS, CAST \& the STARS

Obvious and dramatic conflict !
m

PVLAS strength of interaction
leads to $\quad \mathcal{L}_{\text {exotic }} \sim 10^{6} \mathcal{L}_{\odot}$
Difficult problem; not easy to circumvent

CAST

higher m (gas)
Lower photon energy

PVLAS
higher m (gas)
Search induced ellipticity

Should be present if rotation signal is due to $\phi \gamma \gamma$

New experiments welcome
For example post-HERA

Letter of Intent

QED Test and Axion Search by means of Optical Techniques

To the CERN SPSC

L. Duvillaret ${ }^{1,2}$, M. Finger Jr. ${ }^{3}$, M. Finger ${ }^{3}$, M. Kral 4,5, K. A. Meissner ${ }^{6}$, P. Pugnat ${ }^{4^{*}}$, D. Romanini ${ }^{7}$, A. Siemko ${ }^{4}$, M. Sulc ${ }^{8}$, J. Zicha ${ }^{5}$
${ }^{1}$ LAHC, Université de Savoie, 73376 Le Bourget du Lac Cedex, France IMEP, BP 257, 38016 Grenoble Cedex-1, France
${ }^{3}$ Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic CERN, Geneva, Switzerland
${ }^{5}$ Czech Technical University, Faculty of Mechanical Engineering, Prague, Czech Republic ${ }^{6}$ Warsaw University, Physics Department, Poland
LSP, Université J. Fourier - Grenoble-1 \& CNRS, BP 87, 38402 Saint-Martin d'Hères, France ${ }^{8}$ Technical University of Liberec, Czech Republic

Abstract

The re-use of recently decommissioned 15 -meter long twin aperture LHC superconducting magnet prototypes, providing a transverse magnetic field $B \approx 9.5 \mathrm{~T}$ offers a unique opportunity for the construction of a new powerful two-in-one experiment to investigate the properties of the vacuum by means of optical techniques. Linearly polarised laser light beams will be used as probes inside vacuum chambers housed inside superconducting magnet apertures. One of the apertures will be dedicated to the measurements of the Vacuum Magnetic Birefringence (VMB) and optical absorption anisotropy whereas the other one will be used to detect the photon regeneration from axions using "a shining light through the wall". The VMB predicted by the QED theory is expected to be measured for the first time and the CPT symmetry precisely tested. The values or the limiting values of mass and coupling constant to two photons of weakly interacting scalar or pseudo-scalar particles like axions are also aimed to be deduced from a sizeable deviation of the QED prediction. In case of null result for axion search and with the most conservative view concerning the detection technique, the limits of both parameters, i.e. mass and di-photon coupling constant, can be improved by at least 2 orders of magnitude with respect to present reference results obtained with a purely laboratory experiment. The interest in axion search, providing an answer to the strong-CP problem, lies beyond particle physics since such hypothetical neutral light spin zero particle is considered as one of the good dark matter candidates, and the only non-supersymmetric one.

Photon Regeneration from Pseudoscalars at X-ray Laser Facilities

Raul Rabadan, ${ }^{1, *}$ Andreas Ringwald, ${ }^{2, \dagger}$ and Kris Sigurdson ${ }^{1, \ddagger}$
${ }^{1}$ Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
${ }^{2}$ Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
Recently, the PVLAS collaboration has reported an anomalously large rotation of the polarization of light in the presence of a magnetic field. As a possible explanation they consider the existence of a light pseudoscalar particle coupled to two photons. In this note, we propose a method of independently testing this result by using a high-energy photon regeneration experiment (the X-ray
analogue of "invisible light shining through walls") using the synchrotron X-rays from a free-electron
laser (FEL). With such an experiment the region of parameter space implied by PVLAS could be probed in a matter of minutes.

A way out of the puzzle is to have a model where the Sun emits much less axion-like particles than expected

There would be less energy loss and thus stellar limit are avoided

CAST limit not valid because it assumes "solar- standard" ϕ - flux

I discuss
two possibilities
I) Trapping
II) Suppression of production
ϕ would follow a random walk on its way out of the Sun (like photons). When emitted would have much less energy than when produced in the core.
\Rightarrow Problem: a strong interaction should have been seen elsewhere Interact through mediators ?

PVLAS \& the STARS

II) Suppression of production

Required suppression to make compatible PVLAS with stellar limits (and a fortiori with CAST)

$$
\begin{aligned}
{\left[|F|^{2} \frac{1}{M_{\text {pvlas }}^{2}}\right] \frac{1}{M_{\text {pvlas }}^{2}} } & <\left[\frac{1}{M_{\text {cast }}^{2}}\right] \frac{1}{M_{\text {cast }}^{2}} \\
\quad \Rightarrow|F| & <2 \times 10^{-9}
\end{aligned}
$$

A difference between
the lab

$$
\left|q^{2}\right| \sim 0 \longrightarrow\left|q^{2}\right| \sim \mathrm{keV}^{2}
$$

Suppression F due to a (low scale) form-factor effect

Form factor for 0^{-}mesons

Form factor F in $\pi^{0} \gamma \gamma$ or $\eta \gamma \gamma$ when γ virtual ? THEORETICAL EXPECTATIONS
effective interaction
$\mathcal{L}=\frac{1}{\Lambda} \pi \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta}$
scale ${ }^{1}$ dim. 5 operator

Not expected to be valid at arbitrarily high energies \Rightarrow Variation with energy

VMD model $\quad \wedge \sim M_{\rho}$

Quark
pQCD,
chiral theories
$\wedge \sim M_{h a d}$

Measured Form-factor

 ... IT IS OBSERVED !!$\left|Q^{2}\right|<M_{\text {had }} \sim M_{\rho}$

Fig. 2. Data on the electromagnetic form factor of the η meson. The points are the experimental values for $F^{2}\left(m_{\mu \mu}^{2} ; 0\right)$. The curve is the result of fitting with the dependence $K \cdot(1$
$\left.-m_{\mu \mu}^{2} / \Lambda^{2}\right)^{-2}$, where $\Lambda=(0.72 \pm 0.09) \mathrm{GeV} / c^{2}$ and the coefficient K takes into account the experimental normalization uncertainty.
$Q^{2} \mid \gg M_{h a d} \sim M_{\rho}$

CELLO

FIG. 19. Comparison of the results (points) for FIG. 19. Comparison of the results (points) for
$Q^{2}\left|\mathcal{F}_{\gamma^{*} \gamma \pi^{0}}\left(Q^{2}\right)\right|$ with the theoretical predictions made by Cao et al. [16] with the asymptotic wave function (solid curve) and the $Z \mathrm{w}$ 隹 ctign (Shed curve).

Axion-like particle may be composite

Key point: Composite particle has a form factor

Postulate that

ϕ IS A COMPOSITE PARTICLE

NEED

New constituents

- New confining forces
there will be form-factor effects with a new low-energy scale

Difference between being composite or being elementary

COMPOSITE

ELEMENTARY

Evaluate new scale

Assume only one constituent f (fermion, SM singlet) \& $\operatorname{SU}(\mathrm{N})$ for new forces (nothing to do with color)

To evaluate new scale :
calculate triangle diagram with internal fermion for off-shell photons detail needed suppression

MAIN RESULT:

$$
|F|<2 \times 10^{-9} \quad \underset{\text { new scale }}{\nearrow} \Lambda M_{f}<2 \times 10^{-2} \mathrm{eV}
$$

Notice: same order than mass m of ϕ
(Not necessary a prior, perhaps a clue)

Evaluate new scale

$f_{\gamma \gamma}=-\frac{g M}{\pi^{2} m_{\pi}^{2}} \arcsin ^{2}\left(m_{\pi} / 2 M\right)$

$$
\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z
$$

$$
F\left(s_{1}, s_{2} ; s_{0}\right)=\frac{g M}{2 \pi^{2} f_{\gamma \gamma}} \frac{1}{\lambda^{\frac{1}{2}}\left(s_{0}, s_{1}, s_{2}\right)} \times
$$

$$
\sum_{i=0,1,2}\left[L i_{2}\left(\frac{Y_{i}}{Y_{i}-Y_{+i}}\right)+L i_{2}\left(\frac{Y_{i}}{Y_{i}-Y_{-i}}\right)-L i_{2}\left(\frac{Y_{i}-1}{Y_{i}-Y_{+i}}\right)-L i_{2}\left(\frac{Y_{i}-1}{Y_{i}-Y_{+i}}\right)\right]
$$

$$
\begin{gathered}
L i_{2}(x)=-\int_{0}^{x} \frac{\ln (1-t)}{t} d t \quad Y_{i}=\frac{1}{2}\left[1+\frac{s_{j}+s_{k}-s_{i}}{\lambda^{\frac{1}{2}}\left(s_{0}, s_{1}, s_{2}\right)}\right], i \neq j \neq k ; i \neq k \\
Y_{ \pm i}=\frac{1}{2}\left[1 \pm \sqrt{1-\frac{4 M^{2}-i \varepsilon}{s_{i}}}\right] \\
s_{1}>s_{2} \gg s_{0}=m_{\pi}^{2} \quad F\left(s_{1}, s_{2} ; s_{0}\right) \rightarrow \frac{1}{2\left|s_{1}-s_{2}\right|} \ln ^{2} \frac{\left|s_{1}-s_{2}\right|}{s_{0}^{2}}
\end{gathered}
$$

Remarks/Next

To QCD or not to QCD

We have been inspired by QCD, $\pi^{\prime} s \& q$ But we dont know if QCD is the reference model until last consequences (like it was inTechnicolor)
Need low energy scale \ll keV, in any case
For example $F \sim\left(\Lambda^{2} / Q^{2}\right)^{n} \quad \Lambda$ a few eV for $\mathrm{n}=2$
〇 If similar to QCD... η vs. η^{\prime}
$q_{f} \neq 0$ but very small
not to have undesirable consequences
cosmological astrophysical laboratory
(paraphoton models give arbitrarly epsilon-charges)

Future: Model building and look for signatures

OUTLINE OF THE TALK

*

Light bosons as Dark Matter
Planck-induced symmetry breaking and PGB DM
Bounds on forces mediated by light bosons

Relic density of particles coupled to photons

Work out ϕ decoupling in the early universe
Processes $\quad \begin{aligned} e^{-} \phi & \leftrightarrow e^{-} \gamma_{+} \\ \gamma \phi & \leftrightarrow e^{-} e^{+}\end{aligned}$
(and any other charged particle in equilibrium)

Freeze-out $H\left(T_{f}\right)=\Gamma\left(T_{f}\right) \longleftarrow$ Interaction rate Hubble parameter
Entropy release of annihilating species

Finally Find parameters leading to DM ϕ

$$
\Omega=\frac{\rho}{\rho_{c}}
$$

Cosmological constraints (Other than BBN)

For larger m, necessary to consider effects of unstable ϕ Injection of energy m at a finite lifetime τ_{ϕ}

Depending on τ_{ϕ} there might be cosmological effects on: Photon Background, CMBR distortion or D-fission

Dark matter

We have assumed thermal production due to the coupling to photons

In realistic models: Other couplings
Other production mechanisms

DM candidates

Most famous example:
QCD-axions is a DM candidate

Global symmetries

$$
V=V_{s y m}+V_{n o n-s y m}
$$

are expected to be (explicitly) broken by quantum gravity effects

Consider one scalar field, $\mathrm{U}(\mathrm{I})$ symmetry

$$
V_{\text {sym }}=\frac{1}{4} \lambda\left[|\Psi|^{2}-v^{2}\right]^{2} \quad \text { EM, Rota, Zsembinszki }
$$

g could be exponentially small

Spontaneous breaking in presence of a small explicit breaking

$$
\Psi=\phi e^{i \theta / v}
$$

$$
m_{\theta}^{2}=2 g\left(\frac{v}{M_{P}}\right)^{n-1} M_{P}^{2}
$$

(Numerical integration of eqs.)

PGB dark matter

Astrophysics + cosmology constrain the parameter space of the model
permitted
prohibited
$m_{\theta} \lesssim 20 \mathrm{eV}$

$$
g<10^{-30}
$$

Realistic models have couplings of axion-like particles to matter

Other effects:
Violation of the equivalence principle

Long-range forces

m_{ϕ} small

Interest in new (non-gravitational) forces
Experiments: were motivated by (false alarm) 5th force claim
Theory: x-dimensions, models with light scalars, etc
Axion and other PS lead to spin-dependent forces
I restrict here to forces mediated by scalar or vector coupled to lepton number

Long-range leptonic forces

$$
\begin{array}{lll}
\alpha_{L}<10^{-48}-10^{-49} & \text { from Eotvos-type } & \text { Lee, Yang } \\
& \text { experiments } & \text { Okun }
\end{array}
$$

$$
\left(\frac{m_{p}}{M_{P}}\right)^{2} \sim 10^{-38} \quad\left(\frac{m_{e}}{M_{P}}\right)^{2} \sim 10^{-45}
$$

Limit improved by considering the effect on solar ν oscillations

Solution to ν_{\odot}-problem : LMA resonant MSW matter oscillations

$$
\begin{aligned}
& \Delta m^{2}=5.5 \times 10^{-5} \mathrm{eV}^{2} \\
& \sin ^{2} 2 \theta=0.83
\end{aligned}
$$

Long-range leptonic forces

New contribution

$$
\left\langle\nu_{e}\right| H_{\text {int }}\left|\nu_{e}\right\rangle=\sqrt{2} G_{F} N_{e}+V_{L} \quad V_{L}(r)=\frac{\alpha_{L}}{r} \int_{0}^{r} d^{3} r N_{e}
$$

Demand not to spoil ν_{\odot} solution

$$
\Rightarrow \quad \alpha_{L} \leq 6.4 \times 10^{-54}
$$

10^{5} improvement
free from screening effects valid for ranges $>$ solar radius

CONCLUSIONS

If PVLAS signal confirmed, and it is due a new particle coupled to photons, we need a model to explain why astrophysical bound are not valid.

We have presented a model where the new particle is composite and there is a low energy scale.
The model allows to evade astrophysical constraints.
E. Masso and R. Toldra,
"On a light spinless particle coupled to photons," Phys.Rev.D52:1755-1763,1995
J.A. Grifols, E. Masso and R. Toldra,
"Gamma rays from SN1987A due to pseudoscalar conversion," Phys.Rev.Lett.77:2372-2375,1996
E. Masso and R. Toldra,
" New constraints on a light spinless particle coupled to photons,"
Phys.Rev.D55:7967-7969,1997

