Relic density of dark matter in the NMSSM

G. Bélanger LAPTH

based on

G. B., Boudjema, Hugonie, Pukhov, Semenov hep-ph/0505142

Motivation

- Strong evidence for dark matter
- CMB (WMAP) gives precise information on the amount of dark matter
- Most attractive explanation for dark matter: new weakly interacting particle, for example those present in R-parity conserving SUSY model
- Need for a precise and accurate computation of the relic density of dark matter in different models
- So far most elaborate tools available for MSSM
 - DarkSUSY, micrOMEGAs, IsaTools
- Some analyses of relic density in NMSSM
 - Stephan, hep-ph/9704232; Menon, Morrissey, Wagner hep-ph/0404184; Gunion, Hooper, McElrath, hep-ph/0509024

NMSSM

- Provides solution to µ problem or why SUSY conserving Higgs mass term is order of weak scale
- Add singlet superfield, μ is related to vev of this singlet

$$\lambda \widehat{S} \widehat{H_u} \widehat{H_d} \qquad \qquad \mu = \lambda s$$

- Simplest extension of MSSM yet different phenomenology
 - Upper bound on Higgs mass increases by O(10GeV)
 - Very light Higgs not excluded
 - Light neutralino (singlino) allowed

NMSSM- the model

- MSSM with additional singlet $-\mathcal{L}_{soft} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2$ superfield $+(\lambda A_\lambda H_u H_d S + \frac{1}{3}\kappa A_\kappa S^3 + h.c.)$ $W = -\lambda SH_u H_d + 1/3 \kappa S^3$ $-\frac{1}{2}(M_2\lambda_2\lambda_2 + M_1\lambda_1\lambda_1 + h.c.)$
- Higgs sector: 3 scalars, 2 pseudoscalars
 - µ parameter related to vev of singlet
 - Important radiative corrections to Higgs masses and mixings (calculated in NMHDECAY)

Parameters

$$\mu = \lambda s$$

Purely Higgs sector

$$\lambda, \kappa, \tan\beta, \mu, A_{\lambda}, A_{\kappa}$$

NMSSM- neutralino sector

- One additional neutralino
- $\begin{array}{cccc} M_1 & 0 & M_Z \sin \theta_W \sin \beta & -M_Z \sin \theta_W \cos \beta \\ 0 & M_2 & -M_Z \cos \theta_W \sin \beta & M_Z \cos \theta_W \cos \beta \end{array}$ 0 $\begin{array}{cccc} M_Z \sin\theta_W \sin\beta & -M_Z \cos\theta_W \sin\beta & 0 & -\mu \\ -M_Z \sin\theta_W \cos\beta & M_Z \cos\theta_W \cos\beta & -\mu & 0 \\ 0 & 0 & -\lambda v \cos\beta & -\lambda v \sin\beta \end{array}$ $-\lambda v \cos\beta$ $-\lambda v \sin\beta$ 2ν

Nature of LSP

 $\nu = \kappa s$

 $\widetilde{\chi}_1^0 = N_{11}\widetilde{B} + N_{12}\widetilde{W} + N_{13}\widetilde{H}_u + N_{14}\widetilde{H}_d + N_{15}\widetilde{S}$

- In limit $\lambda \rightarrow 0$ singlino is quasi pure state mass $2\kappa s$
- LSP coupling to Higgses

Singlet component

 $g_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h_{i}} = g(N_{12} - N_{11}\tan\theta_{W})(S_{i1}N_{13} - S_{i2}N_{14}) \quad \text{of scalar}$ Singlino component $+\sqrt{2\lambda}N_{15}(S_{i1}N_{14} + S_{i2}N_{13}) + \sqrt{2}S_{i3}(\lambda N_{13}N_{14} - \kappa N_{15}^2)$.

Implementation into micrOMEGAs

- LanHEP: from the Lagrangian writes all masses and couplings in CalcHEP notation
- Higgs sector: write effective potential

$$\begin{split} \sqrt{r_{\rm rad}} &= \lambda_1 (H_u H_u^*)^2 / 2 + \lambda_2 (H_d H_d^*)^2 / 2 + \lambda_3 (H_u H_u^*) (H_d H_d^*) \\ &+ \lambda_4 (\epsilon H_u H_d) (\epsilon H_u^* H_d^*) + \lambda_5 ((\epsilon H_u H_d)^2 + (\epsilon H_u^* H_d^*)^2) / 2 \\ &+ \lambda_1^s (H_u H_u^*) SS^* + \lambda_2^s (H_d H_d^*) SS^* + \lambda_s^s (SS^*)^2 / 2 \\ &+ \lambda_5^s ((\epsilon H_u H_d) S^2 + (\epsilon H_u^* H_d^*) S^{*2}) / 2 + \lambda_s^s (S^4 + S^{*4}) \,. \end{split}$$

- New couplings must be calculated by an external program
 - We use NMHDECAY to calculate Higgs masses and mixings, U. Ellwanger, J. Gunion, C. Hugonie, JHEP02(2005)066
 - From this extract λ 's and calculate Higgs self-couplings

micromegas_nmssm

- CalcHEP calculates automatically all necessary cross-sections
- Computation of relic density within micrOMEGAs:
 - Input parameters : SLHA_nmssm
 - Masses/mixings of Higgses: from NMHDECAY
 - Other SUSY masses: calculated at tree-level from the soft terms
 - As in MSSM: solve evolution equation, include all coannihilation channels, improved width for Higgs (e.g. Hff), careful treatment of poles
 - Also calculates all 2->2 cross-sections and 1->2 decays (tree-level)
 - LEP constraints and other theoretical constraints given by NMHDECAY
 - Other routines such as b-sγ not implemented yet (will do through NMHDECAY)
- Available on NMHDECAY web page :
 - http://www.th.u-psud.fr/NMHDECAY/
- Soon on <u>http://wwwlapp.in2p3.fr/lapth/micromegas</u>
 - GB, Boudjema, Hugonie, Pukhov, Semenov, hep-ph/0505142

Some results

- Assume universality of gaugino mass at GUT scale, $M_1 \sim .5M_2$ at weak scale
- Assume heavy sfermions ~1TeV
- As in the MSSM, WMAP favours models with LSP mixed bino/Higgsino (~25% Higgsino)
 - Main annihilation χχ->WW, through Higgs exchange and t-channel chargino
 - Also annihilation $\chi \chi$ ->tt
- For almost pure bino LSP, annihilation near Higgs resonance give relic compatible with WMAP
- For different parameters can have other WMAP regions because annihilation through Higgs resonances

What's different?

- More resonances, even at low tanβ
- Annihilation into light Higgses (scalar or pseudoscalar)
- Singlino LSP: can be compatible with WMAP

Case 1: Higgs annihilation

- More resonances
 - Even at low tanβ
 - Mass of scalars and pseudoscalars depend on $A_{\lambda} A_{\kappa}$
 - Can be h2,a1 ...

Case 2: mixed bino-Higgsino LSP

- Large parameter space in λ-κ plane allowed
- Annihilation near resonance
- Annihilation into light Higgses (scalar or pseudoscalar)
- Singlino LSP: can be compatible with WMAP (here excluded by LEP)

 μ =220, M₂=320, tanβ=5, A_λ=500, A_κ=0

Case 2

- Neutralino annihilation into light Higgses: large cross-section (small Ωh²) even though LSP has significant singlino component
- Recall neutralino coupling to Higgs has term proportional to N₁₅

Case 2

χ

χ

- Neutralino annihilation into light Higgses: large cross-section (small Ωh^2) even though LSP has significant singlino component
- Recall neutralino coupling to Higgs has term proportional to N₁₅

Case 3: singlino LSP

- Require predominantly singlino LSP and search parameter space to find scenarios compatible with WMAP
- 3 possible scenarios:
 - Mixed bino/singlino/Higgsino annihilation ha or WW (1,2)
 - Similar to case 2 already discussed
 - Almost pure singlino with resonance annihilation (3,4,5)
 - Light (few GeV) LSP possible
 - See also Gunion, Hooper, McElrath
 - Singlino with dominant coannihilation channels (6)
 - NLSP has large higgsino component

Point	1	2
λ	0.6	0.24
κ	0.12	0.096
aneta	2	5
$\mu \; [\text{GeV}]$	265	200
$A_{\lambda} \; [\text{GeV}]$	550	690
A_{κ} [GeV]	-40	-10
$M_2 \; [\text{GeV}]$	1000	690
$m_{\widetilde{\chi}_1^0}$ [GeV]	122	148
$N_{13}^2 + N_{14}^2$	0.12	0.29
N_{15}^{2}	0.88	0.69
$m_{\widetilde{\chi}_2^0}$ [GeV]	259	199
$m_{\tilde{\chi}_1^{\pm}}$ [GeV]	258	193
$m_{h_1} \; [\text{GeV}]$	117	116
S_{13}^2	0.88	0.04
$m_{h_2} [\text{GeV}]$	128	158
S_{23}^2	0.11	0.96
m_{a_1} [GeV]	114	59
$P_{12}^{'2}$	0.99	1.00
Ωh^2	0.1092	0.1179
	ha~(73%)	VV (75%)
	VV (13%)	ha~(17%)
Channels	Zh (8%)	hh~(5%)
	hh (3%)	Zh (2%)
	qq (2%)	
	ll (1%)	

Case 3: singlino LSP

- Require predominantly singlino LSP and search parameter space to find scenarios compatible with WMAP
- 3 possible scenarios:
 - Mixed bino/singlino/Higgsino annihilation ha or WW (1,2)
 - Similar to case 2 already discussed
 - Almost pure singlino with resonance annihilation (3,4,5)
 - Light (few GeV) LSP possible
 - See also Gunion, Hooper, McElrath
 - Singlino with dominant coannihilation channels (6)
 - NLSP has large higgsino component

	Point	3	4	5
ĺ	λ	0.4	0.23	0.31
	κ	0.028	0.0037	0.006
	aneta	3	3.1	2.7
	$\mu \; [\text{GeV}]$	180	215	210
	$A_{\lambda} \; [\text{GeV}]$	580	725	600
	A_{κ} [GeV]	-60	-24	-6
	$M_2 \; [\text{GeV}]$	660	200	540
ĺ	$m_{\widetilde{\mathbf{y}}_1^0}$ [GeV]	35	10	15
	$N_{13}^2 + N_{14}^2$	0.12	0.03	0.06
	N_{15}^2	0.87	0.95	0.94
	$m_{\widetilde{\chi}_2^0}$ [GeV]	169	87	182
	$m_{\tilde{\chi}_1^{\pm}}$ [GeV]	171	139	196
	$m_{h_1} \; [\text{GeV}]$	36	22	34
	S_{13}^2	0.98	1.00	1.00
	$m_{h_2} \; [\text{GeV}]$	117	114	113
	S_{23}^2	0.01	0.00	0.00
	m_{a_1} [GeV]	56	18	15
	$P_{12}^{'2}$	0.99	1.00	0.99
ĺ	Ωh^2	0.1155	0.1068	0.1124
		qq (65%) ll (35%)	$qq (93\%) \\ ll (7\%)$	aa (92%) qq (7%)
	Channels			<i>ll</i> (1%)

Case 3: singlino LSP

- Require predominantly singlino LSP and search parameter space to find scenarios compatible with WMAP
- 3 possible scenarios:
 - Mixed bino/singlino/Higgsino annihilation ha or WW (1,2)
 - Similar to case 2 already discussed
 - Almost pure singlino with resonance annihilation (3,4,5)
 - Light (few GeV) LSP possible
 - See also Gunion, Hooper, McElrath
 - Singlino with dominant coannihilation channels (6)
 - NLSP has large higgsino component

	Point	6	
ĺ	λ	0.0348	
	κ	0.0124	
	aneta	5	
	$\mu \; [\text{GeV}]$	285	
	$A_{\lambda} \; [\text{GeV}]$	50	
	A_{κ} [GeV]	-150	
	$M_2 \; [\text{GeV}]$	470	
	$m_{\widetilde{\chi}_1^0}$ [GeV]	203	
	$N_{13}^2 + N_{14}^2$	0.02	
	N_{15}^2	0.96	
	$m_{\widetilde{\chi}_2^0}$ [GeV]	214	
	$m_{\tilde{\mathbf{y}}_1^{\pm}}$ [GeV]	266	
	m_{h_1} [GeV]	115	
	S_{13}^2	0.04	
	$m_{h_2} \; [\text{GeV}]$	163	
	S_{23}^2	0.96	
	m_{a_1} [GeV]	214	
	$P_{12}^{'2}$	1.00	
ĺ	Ωh^2	0.1023	1
	Channels	$\begin{array}{l} \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0} \to X \ (81\%) \\ \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{2}^{0} \to X \ (15\%) \\ \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{\pm} \to X \ (2\%) \end{array}$	
		qq~(2%)	

Outlook

- Can we make precise prediction of value of relic density in NMSSM, assuming measurements of parameters at LHC and ILC in particular to match WMAP (or even PLANCK) accuracy?
- Such studies are being performed in context of MSSM and results are rather encouraging for ILC. In Snowmass:
 - F. Richard et al, J. Alexander et al. M. Peskin et al.
- In NMSSM looks harder in many cases.
- First question: can we tell if NMSSM rather than MSSM ?
 - G. Moortgat-Pick et al. hep-ph/0502036
- What are relevant parameters for relic density: mass difference if near resonance, parameters of neutralino sector and couplings to Higgses
- Consider one of the specific NMSSM scenarios (Case 2)

Case 2 – some remarks

- Annihilation channels are into WW (35%) pairs and Higgs pairs h₁h₁(17%) h₁a₁(40%)
- This point with mixed bino/Higgsino is somewhat similar, but not as favourable, as LCC2 (in this case precise determination of parameters for relic density ~5% possible, J. Alexander et al.)
- Can produce 4 neutralinos @500GeV (σ~20fb) and chargino pairs (σ~106fb)
 - Neutralino masses: 146, 209, 263, 276, 368GeV
 - Chargino masses: 215, 364GeV
 - Scalar Higgs masses: 106, 257, 894GeV
 - Pseudoscalar masses: 57, 893GeV
- Main problem: dependence on parameters of Higgs sector, in particular light pseudoscalar. Need to measure mass and couplings of a₁ but it is singlet, how to produce it?

 $\sigma(e^+e^- \rightarrow h_1 a_1) \sim 10^{-7} fb$

Conclusion

- We have performed precise calculation of relic density of dark matter in the NMSSM with micrOMEGAs +NMHDECAY
- As compared to the MSSM, in the NMSSM there are new possibilities for neutralino annihilation that leads to relic density in agreement with WMAP: more resonances, annihilation into light Higgses, possibility of singlino LSP (even very light).
- Remains to be seen whether a precise prediction of the relic density in the NMSSM is possible assuming discovery and measurements of some SUSY parameters.