Phenomenology of CP Violation in Supersymmetric Charged Higgs Processes

Jennifer Williams

Work done for PhD degree

NS Cavendish Laboratory

Plan

- Background
- Production
- Rapidity and Transverse Momentum
- Decay
- Combining Production and Decay
- Outlook at the LHC

★ We don't know how supersymmetry is broken

★ We don't know how supersymmetry is broken

- ★ Write down all possible susy breaking terms:
 - keeping gauge invariance
 - Lorentz invariance
 - no corrections to scalar Higgs mass

★ We don't know how supersymmetry is broken

★ Write down all possible susy breaking terms:

- keeping gauge invariance
- Lorentz invariance
- no corrections to scalar Higgs mass

$$\begin{aligned} -\mathcal{L}_{\mathsf{soft}} = & \frac{1}{2} \left(m_3 \tilde{g} \tilde{g} + m_2 \widetilde{W} \widetilde{W} + m_1 \widetilde{B} \widetilde{B} + c.c. \right) \\ & \mathbf{m}_{\tilde{\mathbf{Q}}}^2 \widetilde{Q}^* \widetilde{Q} + \mathbf{m}_{\tilde{\mathbf{u}}}^2 \tilde{u}^{c*} \tilde{u}^c + \mathbf{m}_{\tilde{\mathbf{d}}}^2 \tilde{d}^{c*} \tilde{d}^c + \mathbf{m}_{\tilde{\mathbf{L}}}^2 \widetilde{L}^* \widetilde{L} + \mathbf{m}_{\tilde{\mathbf{e}}}^2 \tilde{e}^{c*} \tilde{e}^c \\ & \left(\left(\mathbf{a}_{\mathbf{u}} \right) \widetilde{u}^c \widetilde{Q} H_u + \mathbf{a}_{\mathbf{d}} \tilde{d}^c \widetilde{Q} H_d + \mathbf{a}_{\mathbf{e}} \tilde{e}^c \widetilde{L} H_d + \mathsf{C.C.} \right) \\ & + m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (b H_u H_d + \mathsf{C.C.}) \end{aligned}$$

★ We don't know how supersymmetry is broken \star Write down all possible susy breaking terms: keeping gauge invariance Lorentz invariance no corrections to scalar Higgs mass Gaugino, masses $-\mathcal{L}_{\text{soft}} = \frac{1}{2} \left(m_3 \tilde{g} \tilde{g} + m_2 \widetilde{W} \widetilde{W} + m_1 \widetilde{B} \widetilde{B} + c.c. \right) \checkmark$ $\mathbf{m}_{\tilde{\mathbf{O}}}^{2} \widetilde{Q}^{*} \widetilde{Q} + \mathbf{m}_{\tilde{\mathbf{u}}}^{2} \widetilde{u}^{c*} \widetilde{u}^{c} + \mathbf{m}_{\tilde{\mathbf{d}}}^{2} \widetilde{d}^{c*} \widetilde{d}^{c} + \mathbf{m}_{\tilde{\mathbf{f}}}^{2} \widetilde{L}^{*} \widetilde{L} + \mathbf{m}_{\tilde{\mathbf{e}}}^{2} \widetilde{e}^{c*} \widetilde{e}^{c}$ $\left(\mathbf{a}_{\mathbf{u}}\tilde{u}^{c}\tilde{Q}H_{u}+\mathbf{a}_{\mathbf{d}}\tilde{d}^{c}\tilde{Q}H_{d}+\mathbf{a}_{\mathbf{e}}\tilde{e}^{c}\tilde{L}H_{d}+\mathsf{C.C.}\right)$ $+ m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (bH_u H_d + \text{c.c.})$

★ We don't know how supersymmetry is broken **Write down all possible susy breaking terms:** keeping gauge invariance Lorentz invariance no corrections to scalar Higgs mass Gaugino, masses Scalar Masses $-\mathcal{L}_{\text{soft}} = \frac{1}{2} \left(m_3 \tilde{g} \tilde{g} + m_2 \widetilde{W} \widetilde{W} + m_1 \widetilde{B} \widetilde{B} + c.c. \right) \leftarrow$ $\rightarrow +\mathbf{m}_{\tilde{\mathbf{O}}}^{2}\widetilde{Q}^{*}\widetilde{Q} + \mathbf{m}_{\tilde{\mathbf{u}}}^{2}\widetilde{u}^{c*}\widetilde{u}^{c} + \mathbf{m}_{\tilde{\mathbf{d}}}^{2}\widetilde{d}^{c*}\widetilde{d}^{c} + \mathbf{m}_{\tilde{\mathbf{f}}}^{2}\widetilde{L}^{*}\widetilde{L} + \mathbf{m}_{\tilde{\mathbf{e}}}^{2}\widetilde{e}^{c*}\widetilde{e}^{c}$ $\left(\mathbf{a}_{\mathbf{u}}\widetilde{u}^{c}\widetilde{Q}H_{u}+\mathbf{a}_{\mathbf{d}}\widetilde{d}^{c}\widetilde{Q}H_{d}+\mathbf{a}_{\mathbf{e}}\widetilde{e}^{c}\widetilde{L}H_{d}+\mathsf{C.C.}\right)$ $+ m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (bH_u H_d + \text{c.c.})$

★ We don't know how supersymmetry is broken **Write down all possible susy breaking terms:** keeping gauge invariance Lorentz invariance no corrections to scalar Higgs mass Scalar Masses Gaugino, masses $-\mathcal{L}_{\text{soft}} = \frac{1}{2} \left(m_3 \tilde{g} \tilde{g} + m_2 \widetilde{W} \widetilde{W} + m_1 \widetilde{B} \widetilde{B} + c.c. \right) \checkmark$ $+ \mathbf{m}_{\tilde{\mathbf{O}}}^{2} \widetilde{Q}^{*} \widetilde{Q} + \mathbf{m}_{\tilde{\mathbf{u}}}^{2} \widetilde{u}^{c*} \widetilde{u}^{c} + \mathbf{m}_{\tilde{\mathbf{A}}}^{2} \widetilde{d}^{c*} \widetilde{d}^{c} + \mathbf{m}_{\tilde{\mathbf{L}}}^{2} \widetilde{L}^{*} \widetilde{L} + \mathbf{m}_{\tilde{\mathbf{e}}}^{2} \widetilde{e}^{c*} \widetilde{e}^{c}$ $\left(\mathbf{a}_{\mathbf{u}}\widetilde{u}^{c}\widetilde{Q}H_{u}+\mathbf{a}_{\mathbf{d}}\widetilde{d}^{c}\widetilde{Q}H_{d}+\mathbf{a}_{\mathbf{e}}\widetilde{e}^{c}\widetilde{L}H_{d}+\mathsf{C.C.}\right)$ $+ m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (bH_u H_d + \text{c.c.})$ Trilinear scalar couplings

★ We don't know how supersymmetry is broken **Write down all possible susy breaking terms:** keeping gauge invariance Lorentz invariance no corrections to scalar Higgs mass Gaugino, masses Scalar Masses $-\mathcal{L}_{\text{soft}} = \frac{1}{2} \left(m_3 \tilde{g} \tilde{g} + m_2 \widetilde{W} \widetilde{W} + m_1 \widetilde{B} \widetilde{B} + c.c. \right) \checkmark$ $+ \mathbf{m}_{\tilde{\mathbf{O}}}^{2} \widetilde{Q}^{*} \widetilde{Q} + \mathbf{m}_{\tilde{\mathbf{u}}}^{2} \widetilde{u}^{c*} \widetilde{u}^{c} + \mathbf{m}_{\tilde{\mathbf{d}}}^{2} \widetilde{d}^{c*} \widetilde{d}^{c} + \mathbf{m}_{\tilde{\mathbf{f}}}^{2} \widetilde{L}^{*} \widetilde{L} + \mathbf{m}_{\tilde{\mathbf{e}}}^{2} \widetilde{e}^{c*} \widetilde{e}^{c}$ $\left(\mathbf{a}_{\mathbf{u}}\widetilde{u}^{c}\widetilde{Q}H_{u}+\mathbf{a}_{\mathbf{d}}\widetilde{d}^{c}\widetilde{Q}H_{d}+\mathbf{a}_{\mathbf{e}}\widetilde{e}^{c}\widetilde{L}H_{d}+\mathsf{C.C.}\right)$ $+ m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (bH_u H_d + \text{C.C.})$ Trilinear scalar couplings Higgs masses

CP Violation

★ Complex phase in couplings (*e.g.* A_t , A_b , m_3 , μ) → \mathcal{M} for CP conjugate states can be different

CP Violation

★ Complex phase in couplings (*e.g.* A_t , A_b , m_3 , μ) → \mathcal{M} for CP conjugate states can be different ★ Not enough to guarantee ...

$$|\mathcal{M}|^{2} = (\mathsf{tree} + \mathsf{loop})^{*} (\mathsf{tree} + \mathsf{loop})$$
$$= |\mathsf{tree}|^{2} + 2 \Re e (\mathsf{tree}^{*} \operatorname{loop}) + |\mathsf{loop}|^{2}$$

 \star For the CP conjugate state:

$$\begin{aligned} \left| \mathcal{M}^{\mathsf{CP}} \right|^2 &= \left(\mathsf{tree}^{\mathsf{CP}} + \mathsf{loop}^{\mathsf{CP}} \right)^* \left(\mathsf{tree}^{\mathsf{CP}} + \mathsf{loop}^{\mathsf{CP}} \right) \\ &= |\mathsf{tree}|^2 + 2 \,\Re e \left(\mathsf{tree}^{*\mathsf{CP}} \,\mathsf{loop}^{\mathsf{CP}} \right) + |\mathsf{loop}|^2 \end{aligned}$$

CP Violation

★ Complex phase in couplings (*e.g.* A_t , A_b , m_3 , μ) → \mathcal{M} for CP conjugate states can be different ★ Not enough to guarantee ...

$$\mathcal{M}|^2 = (\text{tree} + \text{loop})^* (\text{tree} + \text{loop})$$
$$= |\text{tree}|^2 + 2 \Re e (\text{tree}^* \text{loop}) + |\text{loop}|^2$$

★ For the CP conjugate state:

$$\begin{aligned} \left| \mathcal{M}^{\mathsf{CP}} \right|^2 &= \left(\mathsf{tree}^{\mathsf{CP}} + \mathsf{loop}^{\mathsf{CP}} \right)^* \left(\mathsf{tree}^{\mathsf{CP}} + \mathsf{loop}^{\mathsf{CP}} \right) \\ &= |\mathsf{tree}|^2 + 2 \,\Re e \left(\mathsf{tree}^{*\mathsf{CP}} \,\mathsf{loop}^{\mathsf{CP}} \right) + |\mathsf{loop}|^2 \end{aligned}$$

 \implies Need to have:

- tree loop interference term
- complex loop matrix element

Optical Theorem

★ In QFT: scattering operator, S $|f\rangle = S |i\rangle$ ★ S is unitary (conservation of probability)

$$\begin{split} \mathbf{S} &= \mathbb{I} + i\mathbf{T} \\ \mathbf{S}^{\dagger}\mathbf{S} &= (\mathbb{I} - i\mathbf{T}^{\dagger})(\mathbb{I} + i\mathbf{T}) \\ \mathbb{I} &= \mathbb{I} - i(\mathbf{T}^{\dagger} - \mathbf{T}) + \mathbf{T}^{\dagger}\mathbf{T} \\ \mathbf{T}^{\dagger}\mathbf{T} &= 2\,\Im m\,\mathbf{T} \end{split}$$

 \implies Complex \mathcal{M} (CP violation) IF possible to split diagram into real bits

Dominant production process for charged Higgs is

Dominant production process for charged Higgs is

bottom quark – gluon fusion

used FormCalc to calculate cross section asymmetry:

$$\mathcal{A}_{\text{parton}} = \frac{\hat{\sigma}(\overline{b}g \to H^+ \overline{t}) - \hat{\sigma}(bg \to H^- t)}{\hat{\sigma}(\overline{b}g \to H^+ \overline{t}) + \hat{\sigma}(bg \to H^- t)}$$

★ Plot \mathcal{A} vs partonic centre of mass energy, $\sqrt{\hat{s}}$ and charged Higgs mass, $m_{H^{\pm}}$

★ Notice the thresholds — remember them!

★ 2-d plots: sections through 3-d plot:

• VS $\sqrt{\hat{s}}$

- constant $m_{H^{\pm}} = 402 \text{ GeV}$
- trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

★ 2-d plots: sections through 3-d plot:

• VS $\sqrt{\hat{s}}$

- constant $m_{H^{\pm}} = 402 \text{ GeV}$
- trilinear scalar coupling: range of $|A_t|$ $\phi_t = \frac{\pi}{2}$

- ★ 2-d plots: sections through 3-d plot:
- VS $\sqrt{\hat{s}}$
- constant $m_{H^{\pm}} = 675 \text{ GeV}$
- trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

Jennifer Williams, Cavendish Laboratory – p.8/30

★ 2-d plots: sections through 3-d plot:

- ullet VS $m_{H^{\pm}}$
- constant $\sqrt{\hat{s}} = 980 \text{ GeV}$
- trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

★ 2-d plots: sections through 3-d plot:

- ullet VS $m_{H^{\pm}}$
- constant $\sqrt{\hat{s}} = 2000 \text{ GeV}$
- trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

Hadronic Production

Hadronic Production

 \bigstar Convoluting with pdfs integrates over $\sqrt{\hat{s}}$

ullet VS $m_{H^{\pm}}$

• trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

 \star Thresholds still there: in $m_{H^{\pm}}$

Hadronic Production

 \bigstar Convoluting with pdfs integrates over $\sqrt{\hat{s}}$

ullet VS $m_{H^{\pm}}$

• trilinear scalar coupling: range of $|A_t|$ $\phi_t = \frac{\pi}{2}$

 \star Thresholds still there: in $m_{H^{\pm}}$

★ What happens within detector?

- No good if \mathcal{A} all along beampipe!
- Plot \mathcal{A} differentially, vs θ :
 - (H^{\pm} production angle, parton c.o.m. frame)

★ What happens within detector?

- No good if \mathcal{A} all along beampipe!
- Plot A differentially, vs θ:
 (H[±] production angle, parton c.o.m. frame)

★ What happens within detector?

- No good if \mathcal{A} all along beampipe!
- Plot A differentially, vs θ:
 (H[±] production angle, parton c.o.m. frame)

★ What happens when pdfs are included?

 Use detector variable rapidity (Additive under longitudinal boosts)

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right),$$

★ Need kinematics for massive final particles!

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}y_H \,\mathrm{d}p_T} = \frac{1}{x_b} F\left(b, x_b\right) \frac{1}{\hat{s}} F\left(g, \frac{\hat{s}}{x_b s}\right) \int \mathrm{d}\theta_* \frac{\mathrm{d}\sigma}{\mathrm{d}\theta_*}\left(\hat{s}\right) \left| \frac{\partial\left(\hat{s}, x_b\right)}{\partial\left(y_H, p_T\right)} \right|$$

 \star \mathcal{A} vs rapidity

$\star m_{H^{\pm}} = 402 \; \mathrm{GeV}$

★ trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

 \star \mathcal{A} vs rapidity

$\star m_{H^{\pm}} = 1000 \text{ GeV}$

★ trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$

- \star \mathcal{A} vs rapidity
- $\star m_{H^{\pm}} = 1000 \text{ GeV}$
- ★ trilinear scalar coupling: $|A_t| = 1000 \text{ GeV}$ $\phi_t = \frac{\pi}{2}$
- ★ rather more central

BETTER NEWS!

★ Consider charged Higgs decay to top and bottom quarks Christova *et al* (Nucl. Phys. B639 (2002) 263-280)

★ Consider charged Higgs decay to top and bottom quarks Christova *et al* (Nucl. Phys. B639 (2002) 263-280)

★ Consider charged Higgs decay to top and bottom quarks Christova *et al* (Nucl. Phys. B639 (2002) 263-280)

★ Consider charged Higgs decay to top and bottom quarks Christova *et al* (Nucl. Phys. B639 (2002) 263-280)

★ Consider charged Higgs decay to top and bottom quarks Christova *et al* (Nucl. Phys. B639 (2002) 263-280)

★ Same loop diagrams —

★ See similar features to production

 \star BUT, no thresholds in $\sqrt{\hat{s}}$

 $\star \mathcal{A}$ vs $m_{H^{\pm}}$

 $\phi_t = \frac{\pi}{2}$

★ trilinear scalar coupling:

 $|A_t| = 1000 \text{ GeV}$

\star Need cross section \times branching ratio:

(Narrow width approximation, *i.e.* charged Higgs is produced and then decays)

$$\mathcal{A}_{\text{total}} = \frac{\sigma\left(H^{+}\right)\Gamma\left(H^{+}\right) - \sigma\left(H^{-}\right)\Gamma\left(H^{-}\right)}{\sigma\left(H^{+}\right)\Gamma\left(H^{+}\right) + \sigma\left(H^{-}\right)\Gamma\left(H^{-}\right)}.$$

★ Need cross section × branching ratio:

(Narrow width approximation, *i.e.* charged Higgs is produced and then decays)

$$\mathcal{A}_{\text{total}} = \frac{\sigma\left(H^{+}\right)\Gamma\left(H^{+}\right) - \sigma\left(H^{-}\right)\Gamma\left(H^{-}\right)}{\sigma\left(H^{+}\right)\Gamma\left(H^{+}\right) + \sigma\left(H^{-}\right)\Gamma\left(H^{-}\right)}.$$

★ Made simpler because loop contributions are small:

$$\mathcal{A}_{\text{total}} = \mathcal{A}_{\text{hadron}} + \mathcal{A}_{\text{decay}}$$

 $\bigstar \mathcal{A}$ vs $m_{H^{\pm}}$

 $\phi_t = \frac{\pi}{2}$

★ trilinear scalar coupling:

 $|A_t| = 1000 \text{ GeV}$

Total: all loops, SPS 1a, $\phi_t = \pi/2$, $|A_t| = |A_b| = 1000$ GeV 0.035Production $\mathcal{A}_{\rm total}$ 0.03 Decay Total 0.025 0.02 0.0150.010.005 0 -0.005 m_{H^\pm} / GeV -0.01 400 600 800 1000 1200 1400 200

1400

 $m_{H^{\pm}}$ / GeV

= 750 GeV

= 500 GeV= 250 GeV

1000

1200

★ Number of Charged Higgs events seen at ATLAS:

 $N = \sigma \left(pp \to bg \to H^{\pm}t \right) \mathsf{BR} \left(H^{\pm} \to tb \right) \times \mathsf{acceptance} \times \mathsf{luminosity}$

★ Number of Charged Higgs events seen at ATLAS:

 $N = \sigma \left(pp \to bg \to H^{\pm}t \right) \mathsf{BR} \left(H^{\pm} \to tb \right) \times \mathsf{acceptance} \times \mathsf{luminosity}$

 $\bigstar N$ VS $m_{H^{\pm}}$

- acceptance = 0.05
- luminosity = 300 fb⁻¹

★ Number of Charged Higgs events seen at ATLAS:

 $N = \sigma \left(pp \to bg \to H^{\pm}t \right) \mathsf{BR} \left(H^{\pm} \to tb \right) \times \mathsf{acceptance} \times \mathsf{luminosity}$

N

 $\bigstar N$ VS $m_{H^{\pm}}$

- acceptance = 0.05
- luminosity = 300 fb⁻¹
- ★ Significance of observation:

 $f = \sqrt{N} \mathcal{A}$

 $f = \frac{\text{number signal events}}{\sqrt{\text{number background events}}} \sigma$ $\mathcal{A} = \frac{\text{number events asymmetry signal}}{\text{total number events}}$

Number of H^{\pm} events detected. SPS 1a, varying Higgs mass. 3500 3000 2500 200015001000500 $m_{H^{\pm}}$ / Ge 1200 1400 200400 600 800 1000

Jennifer Williams, Cavendish Laboratory – p.20/30

 m_{H^\pm} / GeV

Conclusions

→ THIS asymmetry too small to see at LHC

Conclusions

★ THIS asymmetry too small to see at LHC

★ Brighter points:

★ Only considered one process —

★ Allow other production methods

(*e.g.* gluon – gluon fusion)

★ Include other decays

(e.g. decays to SUSY particles)

★ Vary other phases

 \star Look at similar process in e^+e^- linear collider?

Conclusions

★ THIS asymmetry too small to see at LHC

★ Brighter points:

★ Only considered one process —

★ Allow other production methods

(*e.g.* gluon – gluon fusion)

★ Include other decays

(e.g. decays to SUSY particles)

★ Vary other phases

 \star Look at similar process in e^+e^- linear collider?

And finally —

for your helpful input while I have been here!

★ Thank you ...

for your helpful input while I have been here!

* And Goodbye ...

I'll have to participate remotely in the future!

 \star Up to now considered maximum phase in A_t , ϕ_t

★ Allow phase to vary

★ As expect - less asym for smaller phase

★ More interesting when vary other phases also $e.g.A_b, \phi_b$

★ More interesting when vary other phases also $e.g.A_b, \phi_b$

★ Combine production and decay

★ Unfortunately not always constructive

★ Combine production and decay

★ Unfortunately not always constructive

\star Interesting to see vs $m_{H^{\pm}}$:

★ ϕ_b has greater effect for large Higgs mass (More contributions to asymmetry)

 \star Up to now considered maximum phase in A_t , ϕ_t

★ Allow phase to vary

★ As expect - less asym for smaller phase

★ More interesting when vary other phases also $e.g.A_b, \phi_b$

★ More interesting when vary other phases also $e.g.A_b, \phi_b$

★ Combine production and decay

★ Unfortunately not always constructive

★ Combine production and decay

★ Unfortunately not always constructive

\star Interesting to see vs $m_{H^{\pm}}$:

★ ϕ_b has greater effect for large Higgs mass (More contributions to asymmetry)