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Motivation

The Higgs sector of the minimal supersymmetric extension of the Standard

Model (MSSM) is a constrained 2HDM. However, at one-loop all possible

2HDM interactions allowed by gauge invariance are generated (due to

SUSY-breaking interactions).

Thus, the Higgs sector of the MSSM is in reality the most general 2HDM

model (albeit with certain relations among the Higgs sector parameters

determined by the fundamental parameters of the broken supersymmetric

model).

The general 2HDM consists of two identical (hypercharge-one) scalar

doublets Φ1 and Φ2. One can always redefine the basis, so the parameter

tanβ ≡ v2/v1 is not meaningful!

To determine the physical quantities, one must develop basis-independent

techniques.



The General Two-Higgs-Doublet Model

Consider the 2HDM potential in a generic basis:
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A basis change consists of a U(2) transformation Φa → Uab̄Φb (and Φ†
ā = Φ†

b̄
U†

bā).

Rewrite V in a U(2)-covariant notation:

V = Yab̄Φ
†
āΦb + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd)

where Zab̄cd̄ = Zcd̄ab̄ and hermiticity implies Yab̄ = (Ybā)
∗ and Zab̄cd̄ = (Zbādc̄)

∗. The

barred indices help keep track of which indices transform with U and which transform with

U†. For example, Yab̄ → Uac̄Ycd̄U
†
db̄

and Zab̄cd̄ → UaēU
†
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UcḡU
†
hd̄

Zef̄gh̄.



The most general U(1)EM-conserving vev is:

〈Φa〉 =
v√
2

 
0

bva

!
, with bva ≡ e

iη

 
cβ

sβ eiξ

!
,

where v ≡ 2mW/g = 246 GeV. The overall phase η is arbitrary (and can be removed

with a U(1)Y hypercharge transformation). If we define Vab̄ ≡ v̂av̂
∗
b̄ , then the scalar

potential minimum condition is given by the invariant condition:

Tr (V Y ) + 1
2v

2
Zab̄cd̄VbāVdc̄ = 0 .

The orthonormal eigenvectors of Vab̄ are v̂b and bwb ≡ −εbc bv ∗
c̄ (with ε12 = −ε21 = 1,

ε11 = ε22 = 0). Note that v̂∗
b̄ ŵb = 0. Under a U(2) transformation, v̂a → Uab̄v̂b, but:

bwa → (det U)
−1

Uab̄ bwb ,

where det U is a pure phase. In fact, the overall phase in the definition of ŵ is completely

arbitrary. Keeping track of this phase ambiguity is important for identifying true invariants.

Remark: U(2)∼= SU(2)×U(1)Y. The parameters m2
11, m2

22, m2
12, and λ1, . . . , λ7 would

change under the “flavor”-SU(2) transformation, while v̂ transforms under the full U(2)

group.



The Higgs basis

Define new Higgs doublet fields:

H1 ≡ v̂
∗
āΦa , e

iχ
H2 ≡ ŵ

∗
āΦa .

Equivalently, Φa = H1v̂a + H2ŵae
iχ. The phase χ parameterizes a class of bases

called the Higgs bases. In addition, χ represents the ambiguity in the overall phase in the

definition of ŵ. From the definitions of H1 and H2, it follows that

〈H0
1〉 =

v√
2

, 〈H0
2〉 = 0 .

The field H1 defined above is invariant. However, under a U(2) transformation,

e
iχ

H2 → (det U)e
iχ

H2 .

For example, under the U(2) transformation U = diag (1 , eiθ), one can transform

among different Higgs bases. Henceforth, quantities that are invariant under SU(2) but

not under U(2) will be called pseudo-invariants.

If we rewrite the Higgs potential V in the Higgs basis, we find:



V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3e

iχH†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+ 1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
n

1
2Z5e

2iχ
(H

†
1H2)

2
+
h
Z6e

iχ
(H

†
1H1) + Z7e

iχ
(H

†
2H2)

i
H

†
1H2 + h.c.

o
,

where (with Wab̄ ≡ ŵaŵ
∗
b̄ = δab̄ − Vab̄),

Y1 ≡Tr (Y V ) , Y2 ≡ Tr (Y W ) ,

Z1 ≡Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄ WbāWdc̄ ,

Z3 ≡Zab̄cd̄ VbāWdc̄ , Z4 ≡ Zab̄cd̄ Vbc̄Wdā

are invariant quantities, whereas the following pseudo-invariants
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Z6 ≡Zab̄cd̄ bv∗
ā bvb bv∗
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transform as [Y3, Z6, Z7] → (det U)−1[Y3, Z6, Z7] and Z5 → (det U)−2Z5. The



(pseudo-)invariants in the generic basis are [with λ345 ≡ λ3 + λ4 + Re(λ5 e2iξ)]:
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The Higgs mass-eigenstate basis

Starting in the Higgs basis,
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where ϕ0
1, ϕ0

2 are CP-even neutral Higgs fields, A is a CP-odd neutral Higgs field, and

H+ is the physical charged Higgs boson, with mass m2
H± = Y2 + 1

2Z3v
2. If the Higgs

sector is CP-violating, then ϕ0
1, ϕ0

2, and A all mix to produce three physical neutral Higgs

states of indefinite CP. After employing the potential minimum conditions: Y1 = −1
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A is the following auxiliary quantity:
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The squared-mass matrix is real symmetric; thus it is diagonalized by an orthogonal

transformation M2
D = RM2RT , where RRT = I. A convenient form for R is:

R =
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where cij ≡ cos θij and sij ≡ sin θij. The neutral Higgs mass eigenstates are denoted

by h1, h2 and h3: 0
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Since the mass-eigenstates hi do not depend on the initial basis choice, they are U(2)-

invariants. It follows that θ12 and θ13 are U(2)-invariants, whereas θ23 transforms as

eiθ23 → (det U)−1eiθ23. One can also check that the physical Higgs squared-masses

(which are the eigenvalues of M2) are invariant quantities.



Example: Higgs self-couplings

Lightest neutral Higgs boson cubic self-coupling:
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Lightest neutral Higgs boson quartic self-coupling:
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where s123 ≡ s12 − ic12s13.

Note that these quantities depend on U(2)-invariants. In particular Z5e
−2iθ23, Z6e

−iθ23

and Z7e
−iθ23 are U(2)-invariants!



The Higgs-fermion Yukawa couplings

In the generic basis, the Higgs-fermion Yukawa Lagrangian is:

−LY = Q
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L
eΦ1η
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where eΦi ≡ iσ2Φ
∗
i , Q0

L is the weak isospin quark doublet, and U 0
R, D0

R are weak isospin

quark singlets in an interaction eigenstate basis, and ηU,0
1 , ηU,0

2 , ηD,0
1 , ηD,0

2 are matrices

in flavor space. Under a U(2) transformation, if we demand that (ηQ,0
i )a → Uab̄(η

Q,0
i )b

(for Q = U, D and i = 1, 2) then LY is invariant.

Identify the fermion mass eigenstates by employing the appropriate bi-unitary transformation

of the quark mass matrices involving unitary matrices V U
L , V D

L , V U
R , V D

R , where K ≡
V U

L V D †
L is the CKM matrix. Then, define ηQ ≡ (ηQ
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2 ) and introduce the quantities:
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Q
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.

Under a U(2) transformation, κQ is invariant, whereas ρQ → (det U)ρQ.



The quark mass terms are identified by replacing the scalar fields with their vev’s. V U
L ,

V D
L , V U

R and V D
R are then chosen so that κD and κU are diagonal with real non-negative

entries. The resulting quark mass matrices are then diagonal:
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D
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U
.

Converting the Higgs-fermion interaction to the Higgs basis, one finds:
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,

where PR,L = 1
2(1 ± γ5). The physical couplings of the quarks to the Higgs fields are

then obtained by expressing ϕ0
1, ϕ0

2 and A in terms of the neutral Higgs mass eigenstates.

Note that under a U(2) transformation, H+ → (det U)H+, so that the combination

(ρQ)∗H+ is invariant. The Goldstone couplings are also invariant.

The final form for the Yukawa couplings of the neutral Higgs bosons to the quarks is:
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where s123 ≡ s12 − ic12s13 and c123 ≡ c12 + is12s13. The Higgs-fermion Yukawa

couplings depend only on invariant quantities: the diagonal quark mass matrices, ρQeiθ23,

and the invariant angles θ12 and θ13. In general, the ρQ are complex non-diagonal

matrices. Hence, LY exhibits tree-level Higgs-mediated flavor-changing neutral currents.



The significance of tan β

So far, tan β has been completely absent from the Higgs couplings. This must be so, since

tan β is basis-dependent in a general 2HDM. However, a particular 2HDM may single out

a preferred basis, in which case tan β would be promoted to an observable. To simplify

the discussion, we focus on a one-generation model, where the Yukawa coupling matrices

are simply numbers.

As an example, the MSSM Higgs sector is a type-II 2HDM, i.e., ηU
1 = ηD

2 = 0.

A basis-independent condition for type-II is: ηU · ηD ∗ = 0. In the preferred basis,

v̂ = (cos β , sin β eiξ) and ŵ = (− sin βe−iξ , cos β). Evaluating κQ = v̂∗ · ηQ and

ρQ = ŵ∗ · ηQ in the preferred basis, it follows that:

e−iξ tan β = −ρD ∗

κD
=

κU

ρU
,

where κQ =
√

2mQ/v. These two definitions are consistent if κUκD + ρUρD ∗ = 0 is

satisfied. But this is equivalent to the type-II condition, ηU · ηD ∗ = 0.



Since ρQ is a pseudo-invariant, we can eliminate ξ by rephasing Φ2. Hence,

tan β =
|ρD|
κD

=
κU

|ρU |
,

with 0 ≤ β ≤ π/2. Indeed, tan β is now a physical parameter, and the |ρQ| are no

longer independent:

|ρD| =

√
2md tan β

v
, |ρU | =

√
2mu cot β

v
.

In the more general (type-III) 2HDM, tan β is not a meaningful parameter. Nevertheless,

one can introduce three tan β-like parameters:∗

tan βd ≡ |ρD|
κD

, tan βu ≡ κU

|ρU | , tan βe ≡ |ρE|
κE

,

the last one corresponding to the Higgs-lepton interaction. In a type-III 2HDM, there is

no reason for the three parameters above to coincide.
∗

Interpretation: In the Higgs basis, up and down-type quarks interact with both Higgs doublets. But, clearly there exists

some basis (i.e., a rotation by angle βu from the Higgs basis) for which only one of the two up-type quark Yukawa couplings is

non-vanishing. This defines the physical angle βu.



The MSSM Higgs sector is a type-III 2HDM

The tree-level Higgs potential of the MSSM satisfies:

λ1 = λ2 = −λ345 = 1
4(g

2
+ g

′2
) , λ4 = −1

2g
2
, λ5 = λ6 = λ7 = 0 .

But, one-loop radiative corrections generate corrections to these relations, due to

SUSY-breaking. E.g., at one-loop, λ5, λ6, λ7 6= 0.

For MSSM Higgs couplings to fermions, Yukawa vertex corrections modify the effective

Lagrangian that describes the coupling of the Higgs bosons to the third generation quarks:

−Leff = εij

h
(hb + δhb)b̄RHi

dQ
j
L

+ (ht + δht)t̄RQi
LHj

u

i
+∆hbb̄RQk

LHk∗
u +∆htt̄RQk

LHk∗
d +h.c.

Indeed, this is a general type-III model. For example, in some MSSM parameter regimes

(corresponding to large tan β and large supersymmetry-breaking scale compared to v),†

∆hb ' hb

"
2αs

3π
µMg̃ I(M2

b̃1
, M2

b̃2
, M2

g̃ ) +
h2

t

16π2
µAt I(M2

t̃1
, M2

t̃2
, µ2)

#
.

This leads to a modification of the tree-level relation between mb and hb. In addition, it

leads to a splitting of tan βd and tan βu.
†

I(a, b, c) = [ab ln(a/b) + bc ln(b/c) + ca ln(c/a)]/(a − b)(b − c)(a − c).



For illustrative purposes, we neglect CP violation in the following simplified discussion.

The tree-level relation between mb and hb is modified:

mb =
hbv√

2
cos β(1 + ∆b) ,

where ∆b ≡ (∆hb/hb) tan β. That is, ∆b is tan β-enhanced, and governs the leading

one-loop correction to the physical Higgs couplings to third generation quarks. In typical

models at large tan β, ∆b can be of order 0.1 or larger and of either sign.

In the approximation scheme above, κU ' ht sin β, ρU ' ht cos β, and

κD 'hb cos β(1 + ∆b) ,

ρ
D ' − hb sin β

„
1 − ∆b

tan2 β

«
' −hb sin β .

It follows that:

tan βd ' tan β

1 + ∆b

, tan βu ' tan β .

Thus, supersymmetry-breaking loop-effects can yield observable differences between

tan β-like parameters that are defined in terms of basis-independent quantities.



Some limiting cases

1. The CP-conserving limit

In the case, h1 = h and h2 = H are the CP-even Higgs bosons (with mh < mH) and

h3 = −A is the CP-odd Higgs boson.‡ The Higgs mixing angles reduce to:

c12 = sin(β − α) , s12 = cos(β − α) , c13 = −c23 = 1 , s13 = s23 = 0 .

2. The decoupling limit

Recall that the auxiliary parameter m2
A = m2

H± + 1
2[Z4 −Re(Z5)]v

2. In the decoupling

limit, m2
A, m2

H± � v2, with |Zi| <∼ O(1). One can show that in this limit:

s12 ∼ s13 ∼ O(v2/m2
A) , c12 ∼ c13 ∼ 1 ,

whereas neither c23 nor s23 is particularly close to zero or one. In this limit, h1 ' h, while

h2 and h3 are states of indefinite CP (i.e., strongly-mixed combinations of H and A).
‡Making contact with the standard notation of the CP-conserving 2HDM, the Higgs mixing matrix has

det R = −1. Hence, we need to insert the extra minus sign in the relation between h3 and A.



Lessons and future work

• If phenomena consistent with the 2HDM is found, we will not know a priori the

underlying structure that governs the model. In this case, one needs a model-independent

analysis of the data that allows for the most general CP-violating Model-III.

• Instead of claiming that you have measured tan β (which can only be done in the

context of a simplified version of the model), measure the physical parameters of the

model. Examples include the tan β-like parameters introduced in the one-generation

model. (For three generations, the formalism becomes unwieldly. However, one has good

reason to assume that the third generation quark–Higgs Yukawa couplings dominate.)

• Which tan β-like parameters will be measured in precision Higgs studies at the linear

collider (ILC)? How can one best treat the full three-generation model to one-loop order?

What simplifications can be exploited in the MSSM?

• Compute the one-loop radiative corrections to various Higgs processes in terms of the

physical tan β-like parameters in the MSSM.


