



# RS-1 Graviton Diphoton Decay Study and Results

Vladimir Litvin, Harvey Newman, Sergei Shevchenko Caltech CMS Jim Branson, Marco Pieri UCSD CMS Marie-Claude Lemaire SACLAY Mikhail Dubinin MSU



# Randall –Sundrum model





Gravity scale  $\Lambda_{\pi} = M_{Planck} \exp(-k\pi r_c) \sim \text{TeV}$  for  $kr_c \sim 11-12$  no hierarchy

Graviton resonances  $m_n = x_n k \exp(-k\pi r_c)$ ,  $J_1(x_n)=0$ 

Two parameters control the properties of the RS model: the mass of the graviton  $m_G$  and the constant c=k/M<sub>Planck</sub> determining the graviton couplings and widths

$$\Gamma_n = \rho \, m_n \, \chi_n^2 (k \,/\, M_{Planck})^2$$

Stabilization needs to introduce a scalar field, the radion which generally mixes with the Higgs





## Branching Ratios

### Angular Distributions





## D0 results on Search for Randall-Sundrum Gravitons in Dilepton and Diphoton Final State

#### hep-ex/05050189 May 2005



#### **RS-1** Graviton masses up to 785 (250) GeV for c = 0.01 (0.1)



# **Requested Datasets**



- We have used next datasets for analysis:
  - CMKIN\_4\_3\_0, OSCAR 3\_6\_5 and ORCA\_8\_7\_1
  - Signal (see plot on the next slide)
    - c=0.01 M=1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5 TeV/c<sup>2</sup> 1k each
    - c=0.02 M=1.0, 1.5, 2.0, 2.5, 3.0 TeV/c<sup>2</sup> 1k each
    - c=0.05 M=1.0, 1.5, 2.0, 2.5, 3.0, 3.5 TeV/c<sup>2</sup> 1k each
    - c=0.075 M=2.5, 3.0, 3.5, 4.0 TeV/c<sup>2</sup> 1k each
    - c=0.1 M=1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 TeV/c<sup>2</sup> 1k each
  - There are five backgrounds we need to study:
    - born (MSEL = 0, MSUB = 18)
    - box (MSEL = 0, MSUB = 114)
    - brem (MSEL = 0, MSUB = 14,29,115)
    - QCD (MSEL = 1)
    - DY (MSEL = 0, MSUB = 1, MSTP 43 = 3). We are using PHOTOS radiation for Z boson decay MSTJ 41 = 1 was added.
- Reconstruction with ORCA\_8\_7\_1
- Hybrid algorithm in barrel and Island in endcap (see CMS Note 2001/034)



# **Discovery plane for RS-1 graviton**





# RS-1 graviton cross-sections and lorentzian widths





**RS-1** graviton cross-sections (left) and lorentzian widths (right). Square markers for the crosssections are for qq production, triangle markers are for gg and circles are for the total cross-section



# Table of background datasets



| dataset | 600-<br>800 | 800-<br>1300 | 1300-<br>1900 | 1900-<br>3200 | 3200-<br>5250 | 5250-<br>inf | Total |
|---------|-------------|--------------|---------------|---------------|---------------|--------------|-------|
| Box     | 1k          | 1k           | 1k            | 1k            | 1k            |              | 5k    |
| Born    | 2.5k        | 4k           | 2k            | 1k            | 1k            |              | 10.5k |
| Brem    | 5k          | 5k           | 5k            | 5k            | 5k            | 5k           | 30k   |
| QCD     | 20k         | 20k          | 20k           | 20k           | 10k           | 5k           | 95k   |
| DY      | 1k          | 2.5k         | 1.5k          | 2.5k          | 1k            |              | 8.5k  |





# Energy resolution: mean $\mu$ , sigma $\sigma$ of gaussian fit and $\sigma_{\text{eff}}$ (Barrel)

| P <sub>T</sub> , TeV/c | E <sub>SC</sub> /E <sub>true</sub><br>μ | E <sub>SC</sub> /E <sub>true</sub><br>σ | ${\sf E}_{\sf SC}/{\sf E}_{\sf true}$ | E <sub>25</sub> /E <sub>true</sub><br>μ | E <sub>25</sub> /E <sub>true</sub><br>σ | $E_{25}/E_{true}$ |
|------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-------------------|
| 0.25                   | 0.995                                   | 0.57%                                   | 0.89%                                 | 0.996                                   | 0.57%                                   | 0.81%             |
| 0.75                   | 1.00                                    | 0.59%                                   | 0.89%                                 | 1.00                                    | 0.62%                                   | 1.0%              |
| 1.8                    | 0.991                                   | 0.63%                                   | 1.24%                                 | 0.999                                   | 0.67%                                   | 1.27%             |

Energy resolution: mean  $\mu$ , sigma  $\sigma$  of gaussian fit and  $\sigma_{\text{eff}}$  (Endcap)

| P <sub>T</sub> , TeV/c | E <sub>SC</sub> /E <sub>true</sub><br>μ | E <sub>SC</sub> /E <sub>true</sub><br>σ | ${\sf E}_{\sf SC}/{\sf E}_{\sf true}$ $\sigma_{\sf eff}$ | E <sub>25</sub> /E <sub>true</sub><br>μ | E <sub>25</sub> /E <sub>true</sub><br>σ | $E_{25}/E_{true}$<br>$\sigma_{eff}$ |
|------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|
| 0.25                   | 1.00                                    | 0.82%                                   | 1.15%                                                    | 0.994                                   | 0.96%                                   | 1.2%                                |
| 0.75                   | 1.00                                    | 0.75%                                   | 1.20%                                                    | 1.00                                    | 0.79%                                   | 1.4%                                |
| 1.8                    | 0.993                                   | 1.04%                                   | 1.76%                                                    | 0.985                                   | 1.33%                                   | 2.26%                               |





- 1. 2 Super-Clusters (SCs) with Et > 150 GeV, trig\_hlt\_2p = =1 || trig\_hlt\_r2p==1
- 2. Calorimeter isolation criteria: For each SC, the energy in a cone of  $\Delta R = 0.5$  (excluding the SC) should be < 0.02  $E_T(SC)$
- **3.** E(HCAL)/E(ECAL) < 0.05
- 4. Tracker isolation: the sum of the energy tracks in a cone  $\Delta R = 0.5$  around the Super-Cluster should be < 0.01 E<sub>T</sub>(SC)
- 5. Photon energy corrections are done in a simple way so far
  - $For S1 energy < 1.7 TeV, only simple energy dependent part of correction is applied (just a shift of the peak in 10 different <math>\eta$  bins)
  - For S1 energy > 1.7 TeV, the MGPA saturation correction was applied (see CMS NOTE 2004/024).



# 2D plots of the electromagnetic isolation









# $M_G$ = 1500 GeV and c=0.01



# Number of events for $L = 30 \text{ fb}^{-1}$

|                              | Signal | Born(1.5) | Box(1.2) | Brem(1) | QCD(1) | <b>DY</b> (1) |
|------------------------------|--------|-----------|----------|---------|--------|---------------|
| Trig +2SC                    | 28.9   | 8.6       | 0.10     | 29.2    | 798.7  | 4.3           |
| + EM<br>Isolation            | 24.5   | 5.5       | 0.08     | 20.3    | 361.8  | 3.5           |
| $+E_{\rm HCAL}/E_{\rm ECAL}$ | 24.3   | 5.4       | 0.08     | 4.4     | 12.8   | 3.5           |
| + Tracker<br>Isolation       | 17.6   | 4.2(+0.2) | 0.05     | 0.17    | 0.0    | 0.0           |

All saturated events, passed through the analysis were added in brackets, where applied

# Randall-Sundrum Graviton $M_G = 1.5$ TeV and c=0.01





 $\mu = 1.50$  $\sigma = 0.01$ 

Resolution due to detector

M = [1.467-1.525]TeV/c<sup>2</sup> N<sub>s</sub> = 17.6 evts



# $M_G$ = 3500 GeV and c=0.1



# Number of events for $L = 30 \text{ fb}^{-1}$

|                              | Signal    | Born(1.5)   | Box(1.2)                        | Brem(1) | QCD(1) | <b>DY</b> (1) |
|------------------------------|-----------|-------------|---------------------------------|---------|--------|---------------|
| Trig +2SC                    | 11.6      | 0.20        | 4.4*10-4                        | 0.78    | 821.9  | 0.10          |
| + EM<br>Isolation            | 10.8      | 0.14        | 3.6*10-4                        | 0.32    | 164.4  | 0.095         |
| $+E_{\rm HCAL}/E_{\rm ECAL}$ | 10.6      | 0.13        | 3.4*10-4                        | 0.016   | 0.0    | 0.095         |
| + Tracker<br>Isolation       | 8.9(+1.0) | 0.10(+0.02) | 2.7(+0.24)*<br>10 <sup>-4</sup> | 0.0017  | 0.0    | 7.2*10-4      |

All saturated events, passed through the analysis were added in brackets, where applied



# Signal M<sub>G</sub>=3.5 TeV c=0.1



 $L=30 \text{ fb}^{-1}$ 



 $\label{eq:multiplicative} \begin{array}{l} \mu = 3.46 \\ \sigma = 0.053 \end{array}$  Resolution is mainly due to natural width of the resonance (0.047 GeV/c<sup>2</sup>) with small contribution from detector resolution

In mass window  $3.30-3.62 \text{ TeV/c}^2$  $N_s = 9.9 \text{ evts}$ 

#### Signal + backgrounds vs invariant mass: 30 fb<sup>-1</sup> Events / (8 GeV/c<sup>2</sup>) 14 CMS Events / (50 GeV/c<sup>1</sup> CMS 9Ē $G \rightarrow \gamma \gamma L = 30 \text{ fb}^{-1}$ $G \rightarrow \gamma \gamma L = 30 \text{ fb}^{-1}$ 8 7 c=0.1 12 c=0.01 0⊏-1.4 0LL 2.5 1.55 1.58 1.42 1.44 1.46 1.5 1.52 1.54 1.6 2.6 2.9 3.4 1.48 2.7 2.8 3.1 3.2 3.3 3.5 3 Mass(TeV/c<sup>2</sup>)

Mass(TeV/c<sup>2</sup>)

# Signal + backgrounds vs invariant mass: 10 fb<sup>-1</sup> $\int_{0}^{30} \int_{0}^{6} CMS$ $G \rightarrow YY L = 10 fb<sup>-1</sup>$ $G \rightarrow YY L = 10 fb<sup>-1</sup>$







**Born k=1.5**  
**Box k=1.2** 
$$S = \sqrt{2 \ln Q}$$
 with  $Q = (1 + n_s/n_b)^{ns+nb} \exp(-n_s)$ 

|                  | M <sub>G</sub> = 1.0<br>TeV/c <sup>2</sup> | M <sub>G</sub> =1.25<br>TeV/c <sup>2</sup> | M <sub>G</sub> = 1.5<br>TeV/c <sup>2</sup> | M <sub>G</sub> =1.75<br>TeV/c <sup>2</sup> | M <sub>G</sub> = 2.0<br>TeV/c <sup>2</sup> |
|------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| N <sub>s</sub>   | 135.8                                      | 44.0                                       | 17.6                                       | 7.3                                        | 3.9                                        |
| N <sub>bkg</sub> | 15.0                                       | 8.8                                        | 4.6                                        | 1.8                                        | 1.2                                        |
| S                | 20.6                                       | 10.1                                       | 5.9                                        | 3.9                                        | 2.6                                        |





**Born k=1.5**  
**Box k=1.2** 
$$S = \sqrt{2 \ln Q}$$
 with  $Q = (1 + n_s/n_b)^{ns+nb} \exp(-n_s)$ 

|                  | M <sub>G</sub> = 2.5<br>TeV/c <sup>2</sup> | M <sub>G</sub> =3.0<br>TeV/c <sup>2</sup> | $M_{G} = 3.5$ $TeV/c^{2}$ | M <sub>G</sub> =4.0<br>TeV/c <sup>2</sup> | $M_{G} = 4.5$ $TeV/c^{2}$ |
|------------------|--------------------------------------------|-------------------------------------------|---------------------------|-------------------------------------------|---------------------------|
| N <sub>s</sub>   | 103.8                                      | 31.6                                      | 9.9                       | 3.44                                      | 1.11                      |
| N <sub>bkg</sub> | 1.11                                       | 0.35                                      | 0.13                      | 0.06                                      | 0.02                      |
| S                | 27.3                                       | 15.0                                      | 8.2                       | 4.6                                       | 2.6                       |



# Significance vs RS-1 graviton invariant mass





Significance plots are not taking systematic errors into account



# **Discovery potential**







# Electron and photon discovery potential









Hard process scale uncertainties were calculated based on the cross sections. Default value was s.

| c=0.01 | 1.25 TeV/c <sup>2</sup> | 1.5 TeV/c <sup>2</sup> | 1.75 Tev/c <sup>2</sup> |
|--------|-------------------------|------------------------|-------------------------|
| 4s     | -8.3%                   | -8.2%                  | -8.9%                   |
| 0.25s  | +8.7%                   | +10.7%                 | +10.3%                  |
| c=0.1  | 3.5 TeV/c <sup>2</sup>  | 4.0 TeV/c <sup>2</sup> | 4.5 TeV/c <sup>2</sup>  |
| 4s     | -10.2%                  | -12.7%                 | -12.3%                  |
| 0.25s  | +12.5%                  | +13.9%                 | +14.2%                  |
| Born   | 1300-1900               | 1900-3200              | 3200-5250               |
| 4s     | -0.26%                  | +0.59%                 | -0.49%                  |
| 0.25s  | +0.68%                  | +0.18%                 | +2.55%                  |



# **PDF uncertainties**



Master equations for calculating uncertainties

let X(S) be any variable that depends on the PDF,  $X_0 = X(S_0)$  is evaluated with the 'best-fit' PDF,  $X_k^{\pm} = X(S_k^{\pm})$ 

$$D_{k} = X_{k}^{+} - X_{k}^{-}, \quad k = 1, ..., d \quad (D_{k} = (X_{k}^{+} - X_{0}) - (X_{k}^{-} - X_{0})$$
  
$$R_{j}, \quad j = 1, 2, ..., (2d), \quad R_{1} = X_{1}^{+} - X_{0}, \quad R_{2} = X_{1}^{-} - X_{0}, \quad R_{3} = X_{2}^{+} - X_{0}, \quad R_{4} = X_{2}^{-} - X_{0},$$

two master equations for calculating uncertainties

$$\Delta X = \sqrt{\sum_{k=1}^{d} D_k^2} \qquad \Delta \mathbf{X}_{\mathbf{C}} = \sqrt{\sum_{j=1}^{2d} \mathbf{R}_j^2}$$

 $\Delta X_C$  looks more "stable", because  $\Delta X$  could vary from zero to  $2\Delta X_C$ 

### The talk by Sergey Slabospitsky

http://agenda.cern.ch/askArchive.php?base=agenda&categ=a055243&id=a055243s1t0/moreinfo



# **PDF uncertainties**



# CMKIN\_6\_0\_0 and LHAPDF4.0

$$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{N_{PDF}} [X_{2i} - X_{2i-1}]^2} \qquad \Delta X_C = \frac{1}{2} \sqrt{\sum_{i=1}^{2N_{PDF}} [X_i - X_o]^2}$$

| c=0.01                                 | 1.25 TeV/c <sup>2</sup> | 1.5 TeV/c <sup>2</sup> | 1.75 TeV/c <sup>2</sup> |
|----------------------------------------|-------------------------|------------------------|-------------------------|
| CTEQ6M,∆X <sub>C</sub> /X <sub>0</sub> | 8.3%                    | 8.6%                   | 11.7%                   |
| c=0.1                                  | 3.5 TeV/c <sup>2</sup>  | 4.0 TeV/c <sup>2</sup> | 4.5 TeV/c <sup>2</sup>  |
| CTEQ6M,∆X <sub>C</sub> /X <sub>0</sub> | 23.3%                   | 25.7%                  | 30.8%                   |
| Born                                   | 1300-1900               | 1900-3200              | 3200-5250               |
| CTEQ6M,∆X <sub>C</sub> /X <sub>0</sub> | 6.15%                   | 6.24%                  | 11.44%                  |

Note: uncertainties for c=0.1 are higher because we are saying about higher invariant masses –  $3.5 \text{ TeV/c}^2 - 4.5 \text{ TeV/c}^2$  instead of  $1.25 \text{ TeV/c}^2 - 1.75 \text{ TeV/c}^2$ . In this case we have larger x's

and , hence, higher uncertainties in  $\mbox{PDF}(x,\,Q^2)$ 



# Limits Uncertainties for 30fb<sup>-1</sup>



• Hard scale uncertainties

|        | 4s                     | 0.25s                  |
|--------|------------------------|------------------------|
| C=0.01 | -62 GeV/c <sup>2</sup> | +56 GeV/c <sup>2</sup> |
| C=0.1  | -47 GeV/c <sup>2</sup> | +42 GeV/c <sup>2</sup> |

- LHApdf uncertainties
  - c=0.01 -55 GeV/c<sup>2</sup>
  - c=0.1 -152 GeV/c<sup>2</sup>
- Preselection uncertainty was calculated based on 2% (QCD) and 1% (brem) upper limit of inefficiencies (CMS IN 2005/018, "Selection A"). It propagates to 1-2% cross-section uncertainties and 0.1-0.15 uncertainty in the number of background events
  - c=0.01 -8 GeV/c<sup>2</sup>
  - c=0.1 -5 GeV/c<sup>2</sup>
- Keeping all K-factors equal 1 instead of K=1.5 for born and K=1.2 for box, results will be better:
  - c=0.01 +70 GeV/c<sup>2</sup>
  - **c=0.1** +40 GeV/c<sup>2</sup>
- Uncertainty due to the fact, that Tevatron has a K- factor =2 for born instead of 1.5 (D. Acosta et al., CDF Collaboration, PRL 95(2005) 022003) as we have here
  - c=0.01 -50 GeV/c<sup>2</sup>
  - c=0.1 -30 GeV/c<sup>2</sup>





- We presented preliminary results on the discovery potential for RS-1 graviton in the diphoton decay mode.
- There is an opportunity to find a radion parameters based on the exact knowledge of the RS-1 graviton mass as well as natural width which might be found rather accurately for high graviton masses
- Various confidence limits systematic uncertainties have been estimated – hard process scale, LHApdf uncertainties for the signal as well as for the background. They are changing the results from 50 to 150 GeV.
  - Detector response uncertainties might affect our analysis as well ECAL calibration and, probably, tracker/pixel misalignment are most important, but these effects are beyond the scope of this study.
- Confidence Limits for 30 fb<sup>-1</sup> c=0.01
- Confidence Limits for 10 fb<sup>-1</sup>

c=0.01  $M_G$ = 1.61 TeV c=0.1  $M_G$ = 3.95 TeV c=0.01  $M_G$ = 1.31 TeV c=0.1  $M_G$ = 3.47 TeV