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I. Introduction

• One of the strongest arguments in favour

of SUSY is that the local version of SUSY

(SUGRA) leads to a partial unification of the

SM gauge interactions with gravity.

• However the origin of the µ–term remains

unclear in SUGRA models. Indeed

WSUGRA = W0(hm) + µ(hm)(ĤdĤu) + ...

where

µ(hm) ∼MPl or µ(hm) = 0.

• The correct pattern of electroweak symme-

try breaking requires

µ(hm) ∼ 100 − 1000GeV .

• Since SUGRA is non–renormalizable theory

it should be considered as an effective one.

• Nowadays the best candidate for underlying

theory is superstring theory.



• The enlarged gauge symmetry in the super-

string inspired E6 models forbids any bilinear

terms in the superpotential allowing interac-

tion

WE6
= λS(HdHu) + ... .

• By means of the Hosotani mechanism E6
may be broken to

E6 → SU(3)C × SU(2)W × U(1)Y × U(1)ψ × U(1)χ ,

where U(1)ψ and U(1)χ are defined as

E6 → SO(10)×U(1)ψ, SO(10) → SU(5)×U(1)χ.

• The obtained rank–6 model can be reduced

further to rank–5 model that contains only

one extra U(1)′ factor

U(1)′ = U(1)χ cos θ+ U(1)ψ sin θ .

• At the electroweak or SUSY breaking scale

field S acquires VEV breaking U(1)′ and pro-

viding natural solution of the µ–problem

µeff = λ < S > .



II. Exceptional SUSY model

• For a special value of θ

θ = arctan
√

15

that corresponds to U(1)N symmetry, right

handed neutrino remains sterile after the break-

down of E6.

• Only in this exceptional SUSY model (ESSM)

right handed neutrino can be superheavy.

• Anomalies in the ESSM are cancelled auto-

matically if the particle contents form com-

plete fundamental 27 representations of E6.

• To ensure the gauge coupling unification SU(2)

doublet and anti doublet from extra 27 and

27 (H ′ and H
′
) should be introduced.

• Together with survivors the particle contents

of the ESSM becomes

3

[

(Qi, u
c
i , d

c
i , Li, e

c
i)

]

+ 3(Di, Di)+

+3(H2i) + 3(H1i) + 3(Si) + 3(Nc
i ) +H ′ +H

′
,

where Di and Di are exotic quarks, H1i and H2i are

either Higgs or exotic SU(2) doublets.



• To prevent rapid proton decay the invariance

under some discrete symmetry should be im-

posed.

• The straightforward generalization of R–parity

definition

R = (−1)3(B−L)+2S

assuming BD = 1/3 and BD = −1/3 ensures

that the lightest exotic quark is stable.

• The existence of stable exotic quarks is ruled

out by different experiments.

• There are two different ways to impose an

appropriate Z2 symmetry leading to the baryon

and lepton number conservation which imply

- D and D are diquark and anti diquark, i.e.

BD = 2/3 , BD = −2/3 ;

- exotic quarks are leptoquarks, i.e.

BD = 1/3 , LD = 1 ,

BD = −1/3 , LD = −1 .



• Different generalizations of R–parity result

in different ESSM superpotentials

i) WESSMI = 1
2MijN

c
iN

c
j +W0 +W1 ,

ii) WESSMII = 1
2MijN

c
iN

c
j +W0 +W2.

where

W0 = λijkSi(H1jH2k) + κijkSi(DjDk) + hNijkN
c
i (H2jLk)+

+ hUijku
c
i(H2jQk) + hDijkd

c
i(H1jQk) + hEijke

c
i(H1jLk) ,

W1 = gQijkDi(QjQk) + gqijkDidcju
c
k ,

W2 = gNijkN
c
iDjdck + gEijke

c
iDjuck + gDijk(QiLj)Dk .

• The ESSM superpotentials involve a lot of

new Yukawa interactions that contribute to

the amplitude of K0 − K
0

oscillations and

give rise to µ→ e−e+e−.

• To suppress flavour changing processes one

can postulate ZH2 symmetry under which all

superfields except Hd ≡ H13, Hu ≡ H23 and

S ≡ S3 are odd.

• The ZH2 symmetry simplifies the structure of
interactions in the ESSM superpotentials

λijkSi(H1jH2k) + κijkSi(DjDk) −→ λiS(H1iH2i)+

+κiS(DiDi) + fαβSα(HdH2β) + f̃αβSα(H1βHu) ,

where α, β = 1,2 and i = 1,2,3 .



• But ZH2 symmetry can only be approximate

since it forbids all terms in W1 and W2 that

would allow the exotic quarks to decay.

• In order to provide the correct breakdown

of gauge symmetry and to suppress FCNC

processes we assume that

- only one field S = S3 may have appre-

ciable couplings to the exotic quarks and

SU(2) doublets H1i and H2i and the struc-

ture of the corresponding Yukawa inter-

actions is flavor diagonal ;

- only one pair of SU(2) doublets Hd and

Hu is allowed to have Yukawa couplings

of the order of unity ;

- the Yukawa couplings of exotic particles

to the quarks and leptons of the first two

generations are less than 10−4 and 10−3

respectively ;

- the Yukawa couplings of exotic particles

to the quarks and leptons of the third

generation as well as to the fields S1 and

S2 are smaller than 0.1 .



III. The analysis of RG flow

• According to our assumptions the superpo-
tential of the ESSM can be written as

WESSM ' λS(HdHu) + κiS(DiDi) + ht(HuQ)tc+

+hb(HdQ)bc + hτ(HdL)τ c + ... ,

• We assume that this superpotential is formed

near the Planck scale and RG equations should

be used to compute the gauge and Yukawa

couplings at Q 'MZ.

• The inclusion of loop effects induces mix-
ing between U(1)N and U(1)Y in the gauge
kinetic part of the Lagrangian

Lkin = −1

4

(

F Y
µν

)2 − 1

4

(

FN
µν

)2 − sinχ

2
F Y
µνF

N
µν − ... .

• It can be eliminated by a non–unitary trans-
formation

BY
µ = B1µ −B2µ tanχ , BN

µ = B2µ/ cosχ .

which changes the interaction between the
U(1)N gauge field and matter fields so that

Dµ = ∂µ − ig1Q
Y
i B1µ − i(g′1Q

N
i + g11Q

Y
i )B2µ − ...,

where

g1 = gY , g′1 = gN/ cosχ , g11 = −gY tanχ .



• The RG flow of the gauge couplings is affected by
the kinetic term mixing

dg2

dt
=

β2g32
(4π)2

,
dg3

dt
=

β3g33
(4π)2

,

dG

dt
= G×B , G =

(

g1 g11

0 g′1

)

,

B =
1

(4π)2

(

β1g21 2g1g′1β11 + 2g1g11β1

0 g
′2
1 β

′
1 + 2g′1g11β11 + g211β1

)

,

β3 = 0 , β2 = 4 , β1 =
48

5
, β′

1 =
47

5
, β11 = −

√
6

5
.

• In the E6 inspired models one can expect that

g3(MX) = g2(MX) = g1(MX) = g′1(MX) = g0 ,

g11(MX) = 0 .

• The hypothesis of the gauge coupling unification per-
mits to evaluate

g0 ' 1.21 , MX ' 2 · 1016 GeV ,

g1(MZ)

g′1(MZ)
' 0.99 , g11(MZ) ' 0.020 .

• The running of the Yukawa couplings obeys the RG
equations

dht

dt
=

ht

(4π)2

[

λ2 + 6h2
t −

16

3
g23 − 3g22 − 13

15
g21 − 3

10
g

′2
1

]

,

dλ

dt
=

λ

(4π)2

[

4λ2
i + 3Σκ + 3h2

t − 3g22 − 3

5
g21 − 19

10
g

′2
1

]

,

dκi

dt
=

κi

(4π)2

[

2κ2
i + 2λ2 + 3Σκ −

16

3
g23 − 4

15
g21 − 19

10
g

′2
1

]

,

Σκ = κ2
1 + κ2

2 + κ2
3 , i = 1, 2, 3 .



• The requirement of validity of perturbation

theory up to Q 'MX restricts the interval of

variations of Yukawa couplings at Q 'Mt.

• Whereas the restrictions on κi do not change

much when tanβ varies the upper limit on λ

depends rather strongly on tanβ.

λmax
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IV. Spectrum of the Higgs bosons

• The Higgs boson potential of the ESSM is
given by

V = VF + VD + Vsoft + ∆V ,

VF = λ2|S|2(|Hd|2 + |Hu|2) + λ2|(HdHu)|2 ,

VD =
g22
8

(

H+
d σaHd +H+

u σaHu

)2

+
g′2

8

(

|Hd|2 − |Hu|2
)2

+
g

′2
1

2

(

Q̃1|Hd|2 + Q̃2|Hu|2 + Q̃S|S|2
)2

,

Vsoft = m2
S|S|2 +m2

1|Hd|2 +m2
2|Hu|2+

+

[

λAλS(HuHd) + h.c.

]

,

where g′ =
√

3/5 · g1(MZ) .
• At the tree level it contains five fundamental

parameters

λ , m2
1 , m2

2 , m2
S , Aλ .

• At the physical vacuum

H1 =
1√
2

(

v1
0

)

, H2 =
1√
2

(

0
v2

)

, S =
s√
2
,

v2 = v2
1 + v2

2 = (246GeV )2 , tan β = v2/v1 .

• From the conditions for the extrema
∂V

∂v1
=

∂V

∂v2
=
∂V

∂s
= 0

one can express soft masses m2
1, m

2
2, m

2
s via

tanβ, s and v.



• Then tree level masses of the Higgs bosons

depend on four variables:

λ , tanβ , s , Aλ (or m2
A) .

• After the gauge symmetry breaking four gold-

stone modes are absorbed by W , Z and Z ′.

• Thus the Higgs sector of the ESSM involves

– one pseudoscalar m2
A '

√
2λAλ

sin 2β
s ,

– two charged states m2
H± ' m2

A ,

– three scalars

m2
h1

≈ g
′2
1 Q̃

2
Ss

2 'M2
Z ′ ,

m2
h2

≈ m2
A ,

m2
h3

≤ λ2

2
v2 sin2 2β +M2

Z cos2 2β+

+g
′2
1 v

2

(

Q̃1 cos2 β + Q̃2 sin2 β

)2

.

• One CP–even Higgs boson is always heavy

because it has almost the same mass as Z ′.
From the direct searches at the Tevatron

MZ ′ > 500 − 600GeV .

• Masses of another CP–even, CP–odd and

charged Higgs bosons are very close to mA.



• When λ > g
′

1 the parameter of mA is limited from

below and above so that the Higgs spectrum has a

hierarchical structure. For λ = 0.79, tan β = 2, Xt =√
6MS and MZ ′ = MS = 700GeV we get

One–loop Higgs boson spectrum
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• For small values of λ (λ < g
′

1) mA is bounded from

above only so that some of the Higgs states may

gain masses below 1TeV. If λ = 0.3, tan β = 2,

Xt =
√

6MS and MZ ′ = MS = 700GeV we have

One–loop Higgs boson spectrum
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• Even at the tree level the lightest Higgs scalar

in the ESSM can be heavier 120GeV.

Tree level upper bound on mh1
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• Two–loop theoretical restriction on mh1
in

the ESSM does not exceed 150 − 155GeV.

Two–loop upper bound on mh1
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V. Collider phenomenology

• Z ′, exotic quarks and leptons may be pro-

duced at future colliders.

• At the LHC the Z ′ boson can be discovered

if it has a mass below 4 − 4.5TeV.
A.Leike, Phys.Rept. 317 (1999) 143;
J.Kang, P.Langacker, Phys.Rev.D 71 (2005) 035014.

• Its diagnostic via asymmetries should be pos-

sible up to MZ ′ ' 2 − 2.5TeV.

M.Dittmar, A.Nicollerat, A-S.Djouadi, Phys.Lett.B 583
(2004) 111.

Cross section for Drell-Yan production at the LHC



• The hierarchical structure of the Yukawa in-

teractions in the ESSM implies that exotic

particles decay predominantly into the quarks

and leptons of the third generation.

• The exotic quarks decay either via

D → t+ b̃ , D → b+ t̃

if exotic quarks Di are diquarks or via

D → t+ τ̃ , D → τ + t̃ ,
D → b+ ν̃τ , D → ντ + b̃ ,

if exotic quarks Di are leptoquarks.

• The non–Higgsino decay modes are

H̃0 → t+ t̃ , H̃0 → t+ t̃ ,

H̃0 → b+ b̃ , H̃0 → b+ b̃ ,

H̃0 → τ + τ̃ , H̃0 → τ + τ̃ ,

H̃− → b+ t̃ , H̃− → t+ b̃ ,
H̃− → τ + ν̃τ , H̃− → ντ + τ̃ .

• Assuming that f̃ → f + χ0 the exotic quark

will produce either t– and b–quarks or t–

quark and τ–lepton in the final state with

rather high probability.



Cross section for pair production of b, t and exotic

particles at the LHC

• Since σ(pp → DD +X) may be comparable

with σ(pp → tt+X) the presence of light ex-

otic quark will result in appreciable enhance-

ment of the cross section of either

pp → ttbb+X , pp→ bbbb+X

if exotic quarks are diquarks or

pp→ ttll+X , pp→ bbll+X

if new quark states are leptoquarks.



Cross section for pair production of exotic particles

at the LHC

• While at the LHC σ(pp → H̃H̃ + X) is expected to

be considerably smaller than σ(pp → DD + X) they

become comparable at the ILC.

Cross section for pair production of exotic quarks

and leptons at future ILC



VI.Conclusions

• We have presented a self–consistent super-

symmetric model with additional U(1)N fac-

tor which naturally arises after the break-

down of E6 symmetry.

• The SM like Higgs boson in the ESSM is

lighter than 150− 155GeV and can be con-

siderably heavier than in the MSSM and NMSSM.

• When the lightest Higgs scalar is relatively

heavy the masses of the charged, CP–odd

and heaviest CP–even Higgs states are al-

most degenerate and very large

mH± ' mA ' mH & 1TeV .

• The possible manifestations of the consid-

ered model at the LHC are enhanced pro-

duction of l+l−, tt̄ or b̄b pairs coming from

either Z ′ boson or exotic particle decays.

• The discovery at future colliders of the ex-

otic particles and extra Z ′ boson predicted

by the ESSM would provide circumstantial

evidence for superstring theory.


