On study of angle correlations in $\Phi\!\rightarrow\!ZZ\!\rightarrow\!2e2\mu$ at the CMS

Michał Bluj Soltan's Institute for Nuclear Studies, Warsaw

Outline

- Model
- Methodology
- MC Samples
- Selection
- Results

The results presented here are preliminary and can't be distributed before they get approved by the CMS collaboration.

Model

• An effective model of ΦZZ coupling with scalar $(g^{\mu\nu})$ and pseudoscalar $(\epsilon^{\mu\nu\rho\sigma}k_{1\rho}k_{2\sigma})$ terms (A.Skjold, P.Osland Phys. Lett. B329, 305 (1994), implemented in Pythia):

$$C_{\Phi ZZ} \sim m_Z^2 g^{\mu\nu} + \tan{\boldsymbol{\xi}} \cdot \epsilon^{\mu\nu\rho\sigma} k_{1\rho} k_{2\sigma}$$

where $k_1 = (q_1 + q_2)$, $k_2 = (q_3 + q_4)$, $q_{i=1...4}$ momenta of Z^0 s and leptons;

 $\tan \xi$ describes deviation from SM (scalar $\xi = 0$, pseudoscalar $\xi = \pm \pi/2$, CP-violation $\xi \neq 0, \pm \pi/2$).

• Differential cross-section:

$$d\sigma(\boldsymbol{\xi}) \sim \mathcal{H} + \tan \boldsymbol{\xi} \cdot \mathcal{V} + \tan^2 \boldsymbol{\xi} \cdot \mathcal{A}$$

where:

- scalar: \mathcal{H}
- mixing term: ${\cal V}$
- pseudoscalar: \mathcal{A}

Michał Bluj

Methodology: definition of observables

- Angular distributions distinguish between states with different ξ 's
- Two distributions taken in to account:
- Plane angle φ between decay planes of $Z^0 {\rm s}$ in the higgs rest frame
- Polar angle $\theta_{1,2}$ between negatively charged lepton and the direction of Z^0 in the Z^0 boson rest frame

Methodology: maximization of likelihood function

• Definition of likelihood function

$$\mathcal{L}(\xi, R) \equiv 2 \sum_{x_i \in data} \log \mathcal{Q}(\xi, R; x_i)$$

where

$$\mathcal{Q}(\xi, R; x_i) \equiv R \cdot \mathcal{P}_S(\xi; x_i) + (1 - R) \cdot \mathcal{P}_B(x_i)$$

 $\{x_i\}$ – data event, R – fraction of signal in data sample (1st parameter of fit), \mathcal{P}_B and $\mathcal{P}_S(\xi)$ – probability density functions for background and signal:

$$\mathcal{P}_B \equiv \mathcal{P}_B^M \cdot \mathcal{P}_B^{\varphi} \cdot \mathcal{P}_B^{\cos \theta_1} \cdot \mathcal{P}_B^{\cos \theta_2}$$
$$\mathcal{P}_S(\xi) \equiv \mathcal{P}_S^M \cdot (\mathcal{P}_S^{\varphi} \cdot \mathcal{P}_S^{\cos \theta_1} \cdot \mathcal{P}_S^{\cos \theta_2})(\xi)$$

where

 \mathcal{P}^M , \mathcal{P}^{φ} , $\mathcal{P}^{\cos\theta_{1,2}}$ – probability density functions for $m_{4\ell}$, φ and $\cos\theta_{1,2}$ respectively obtained by MC simulation.

Methodology: determination of ξ

• Definition of signal part of Q-function according to expression for $d\sigma(\xi)$: $\mathcal{P}_{S}^{\varphi} \cdot \mathcal{P}_{S}^{\cos\theta_{1,2}}(\xi) \equiv (\mathcal{H} + \tan \xi \cdot \mathcal{V} + \tan^{2} \xi \cdot \mathcal{A})/(1 + \tan \xi + \tan^{2} \xi)$ $-\mathcal{H} \equiv \mathcal{P}_{H}^{\varphi} \cdot \mathcal{P}_{H}^{\cos\theta_{1,2}}$ and $\mathcal{A} \equiv \mathcal{P}_{A}^{\varphi} \cdot \mathcal{P}_{A}^{\cos\theta_{1,2}}$ – probabilities for scalar (H) and pseudoscalar (A)

 $-\mathcal{V}$ is normalized angle distribution for mixing term (V), not probability! (isn't positive) thus it can't be simulated separately

• Determination of ${\cal V}$ from probability for $\xi\!=\!\pi/4$

$$\mathcal{J} \equiv \mathcal{P}_{S}^{\varphi} \cdot \mathcal{P}_{S}^{\cos \theta_{1,2}}(\xi = \pi/4) = (\mathcal{H} + \mathcal{V} + \mathcal{A})/3$$
$$\implies \mathcal{V} = 3 \mathcal{J} - \mathcal{H} - \mathcal{A}$$

and finally:

$$\mathcal{P}_{S}^{\varphi} \cdot \mathcal{P}_{S}^{\cos \theta_{1,2}}(\xi) \equiv \left[(1 - \tan \xi) \cdot \mathcal{H} + \tan \xi \cdot 3 \mathcal{J} + (\tan^{2} \xi - \tan \xi) \cdot \mathcal{A} \right] / (1 + \tan \xi + \tan^{2} \xi)$$

MC samples for "golden" channel $\Phi \rightarrow ZZ \rightarrow 2e2\mu$

- Samples generated with detector acceptance preselection:
 - -2e with $p_t\!>\!\!\mathbf{5}\,\mathrm{GeV}$ & $\eta\!<\!\!\mathbf{2.7}$
 - -2μ with $p_t\!>\!\!{\rm 3~GeV}$ & $\eta\!<\!\!{\rm 2.5}$
- Signal $\Phi \rightarrow ZZ \rightarrow 2e2\mu$:
 - Samples generated for three masses above ZZ threshold $m_{\Phi}{=}200$, 300, 400 GeV
 - Samples used for construction of ${\cal P}$ (scalar, pseudoscalar and $\xi{=}\pi/4$) 10k. evts.
 - For *CP*-violating case samples $\tan \xi = 0.1, 0.4, 4 - 5k. \text{ evts.}$ $\tan \xi = -0.1, -0.4, -4 - 1k. \text{ evts.}$ (limited statistic)
- Background:
 - $-ZZ \rightarrow 2e2\mu$ 20k. evts.
 - $-t\bar{t} \rightarrow 2e2\mu$ 48k. evts.
 - $-Zb\overline{b} \rightarrow 2e2\mu$ 4k. evts.
- All samples generated with low-lumi pile-up (\sim 3.5 "soft" evts./"hard" evt.).
- Full simulation & reconstruction of the CMS detector were used. Michał Bluj 4th CPNSH meeting, 14th December 2005

Selection

- CMS selection for Higgs boson in $\Phi \rightarrow ZZ \rightarrow 2e2\mu$ channel (by D.Futyan, D.Giordano)
 - Di-electron or di-muon trigger (" $Z \rightarrow 2\ell$ -trigger")
 - Reconstructed two lepton pairs e^+e^- and $\mu^+\mu^-$
 - $-\operatorname{All}$ 4 leptons originate at one vertex
 - Isolation at tracker
 - Kinematic cuts
 - a) Cuts on p_t s of leptons $(p_{t1}, p_{t2}, p_{t3}, p_{t4})$
 - b) Cuts on mass of Z candidates:
 - * Symmetric window around better Z candidate (Δm_{Z1})
 - * Asymmetric mass window in mass of worse Z candidate $(m_{Z2}^{min} \div m_{Z2}^{max})$
 - c) Mass window in four lepton mass (mass of higgs candidate) $(m_H^{min} \div m_H^{max})$

• Cuts optimiziation (for each higgs mass) performed automatically to maximize significance:

$$S = \sqrt{2lnQ}$$
, where $Q = \left(1 + \frac{N_S}{N_B}\right)^{N_S + N_B} e^{-N_S}$

Selected cross-sections

	$m_{\Phi} = 200 \; \mathrm{GeV}$				$m_{\Phi} = 300 \text{ GeV}$				$m_{\Phi} = 400 \; \mathrm{GeV}$			
	sig.	ZZ	$t\overline{t}$	$Zb\overline{b}$	sig.	ZZ	$t\overline{t}$	$Zb\overline{b}$	sig.	ZZ	$t\overline{t}$	$Zb\overline{b}$
$\sigma_{tot} (pb)$	17.86	21.2	886	525	9.41	21.2	886	525	8.71	21.2	886	525
$\sigma_{tot} \cdot \epsilon \cdot BR$	7.65	11.81	817.52	116.38	5.08	11.81	817.52	116.38	4.45	11.81	817.52	116.38
rec. $2\mu 2e$	5.46	6.71	173.02	32.77	3.74	6.71	173.02	32.77	3.35	6.71	173.02	32.77
Z mass	3.89	3.74	0.09	< 0.02	2.69	2.17	0.14	0.05	2.46	1.59	0.10	< 0.02
Φ mass	3.34	0.58	< 0.03	< 0.02	2.10	0.23	< 0.03	< 0.02	2.02	0.16	< 0.03	< 0.02
S/B	~ 5.3				~ 7.5				~ 9.6			

- All cross-section, but σ_{tot} in fb.
- $\bullet~\epsilon$ stands for detector acceptance efficiency
- Signal cross-section & BR assumed to be independent from value of ξ ; SM cross-section & BR are assumed.
- Only $q\bar{q} \rightarrow ZZ$ contribution for ZZ cross-section taken in account; Contribution of $gg \rightarrow ZZ$ (~20% of $\sigma_{q\bar{q}}\rightarrow ZZ$) not included.
- All background types, but ZZ negligible after selection for $m_{\Phi} > 2m_Z$ \implies not taken in account in further analysis.

Reconstructed angle distributions

- \bullet Reconstructed angle distributions for $m_{\Phi}{=}300~{\rm GeV}$
- Plots normalized to 20/fb (1 year of LHC at low lumi)
- ullet Histograms for $\cos\theta$ contain sum of distributions for both θ_1 and θ_2
- Angle distributions not very smooth \implies bigger MC samples needed

Results: reconstructed ξ

Distribution of reconstructed parameter ξ for 200 pseudoexperiments (Results for $\mathcal{L}=60/\text{fb} - 3$ years of LHC at low lumi.)

Results: $\xi_{\rm rec}$ in function $\xi_{\rm true}$

- Mean and standard deviation of distribution of parameter ξ are taken as an estimator of ξ and $\Delta \xi$ respectively.
- Results for negative values of ξ with limited statistic.
- \bullet Results for integrated luminosities $\mathcal{L}{=}20,\,60/fb.$

Summary

- Measurement of CP-violation in $\Phi{\rightarrow}ZZ{\rightarrow}2e2\mu$ with the CMS is feasible
 - Sensitivity for distinguishing between CP-conserving and CP-violating cases is $\sim\!0.25$ for 20/fb and $\sim\!0.15$ for 60/fb.
- Quite good accuracy and precision of determination of ξ parameter:
 - Distinguishing between scalar and pseudoscalar with $S \equiv \frac{|\xi_A^{rec} \xi_H^{rec}|}{\sqrt{(\Delta \xi_A)^2 + (\Delta \xi_H)^2}}$ bigger than ~ 3.5 for 20/fb and ~ 5.8 for 60/fb.
 - Precision of measurement of ξ in order of 0.3 for 20/fb and 0.2 for 60/fb.
- \bullet To improve results smoother angle distributions for reference probabilities $\mathcal P$ are needed

 \implies bigger MC samples for scalar, pseudoscalar and $\xi = \pi/4$.

• All $\Phi \rightarrow ZZ \rightarrow 4\ell$ channels should be used.

The results presented here are preliminary and can't be distributed before they get approved by the CMS collaboration.