

Dynamical EW Breaking: A Classic Francesco Sannino MARIE CURIE ACTIONS

Low Energy Effective Theory

....is not so standard

- Origin of Mass of weak gauge bosons, quarks and leptons is unknown.
- Strong Interactions are not fully understood/explored.
- Strong CP problem: Unnaturally small Neutron Electric Dipole Moment

New Challenges from Cosmology.

• Dark Energy/Matter

Focus on two as Besont the SM

New

as

Origin of Mass for the weak gauge bosons, quarks ...

Understanding Strong Dynamics

Let there be Mass

SM Higgs: Current Status:

hep-ex/0509008

Electroweak Precision Measurements

We can already test New Physics! Kennedy,Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Marciano-Rosner,..:

New Data

The Higgs Mechanism in Nature

Superconductivity

Macroscopic-Screening Non-Relativistic

SM-Screening Relativistic

 $T < T_c$

 $n_s = \text{Density SC electrons}$

$$|\psi|^2 = n_C = \frac{n_s}{2}$$

$$|\phi|^2 = \frac{v^2}{2}$$

Hidden structure

????

Elementary Higgs:

Trivial and Non-natural

Naturality

Small parameters stay small under radiative corrections.

The electron Mass

If set to zero the $U(1)_L \times U(1)_R$ forbids its regeneration

$$m_{eR} = R \times m_{eB}$$

Naturalness begs an explanation of the origin of mass.

No conflict with any small value of the electron mass

Is the Higgs Natural?

No custodial symmetry protecting a scalar mass.

$$M_{HR}^{2} = R \times M_{HB}^{2} + \Lambda^{2}$$

A mass appears even if *ab initio* is set to zero!

Hierarchy between the EW scale and the Planck Scale.

No!

Natural Scalars

Exact Super Symmetry:

Fermions \leftrightarrow Bosons

Fermion's custodial symmetry protects the Bosons

Observe: susy partners

Composite Scalars:

Recall Superconductivity

Substructure resolved at scale $\Lambda_{\rm S}$

$$M_{HR}^{2} = R \times M_{HB}^{2} + \Lambda_{S}^{2}$$

Observe: New Bound States

Quasi Goldstone Boson:

Protected by spontaneously broken global symmetries.

Near Continuous Quantum Phase Transition cQPT:

$$M_H^2 = \Lambda^2 (t_c - t)^{\nu}$$

Zero-temperature Bose – Einstein Condensation Lorentz symmetry is broken.

Chiral Phase Transition at zero temperature. Lorentz symmetry is intact. **No Fundamental Scalars in Nature!**

Electroweak Symmetry Breaking

@

LHC

Light Composite Higgs:

LCH @ LHC

Technicolor

New Strong Interactions at ~250 GeV [Weinberg, Susskind]

Natural to use QCD-like dynamics.

 $SU(N)_{TC} \times SU(3)_C \times SU_L(2) \times U_Y(1)$

 $\langle Q^f \tilde{Q}_{f'} \rangle = \Lambda_{TC}^3 \qquad \qquad \Lambda_{TC} \simeq 250 \ GeV$

Is it really Dead?

Problems with the Old Models

- S-parameter: too large
- Large Flavor Changing Neutral Currents (FCNC)
- Very heavy composite Higgs $\sim 1 \text{ TeV}$.
- Limited knowledge of strong dynamics!

Fermion masses versus FCNC

 Λ_{ETC} should be sufficiently larger than $\Lambda_{TC} \approx 250 GeV$ to reduce FCNC.

Near Conformal Properties

Why the walking can help?

$$\left\langle \bar{Q}Q_{ETC} \right\rangle = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \left\langle \bar{Q}Q_{TC} \right\rangle$$

<u>QCD-Like</u> $\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \sim (\ln(\Lambda_{ETC}/\Lambda_{TC}))^{\gamma_m}$

Near the conformal window

$$\exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} d\ln(\mu) \ \gamma_m(\alpha(\mu))\right) \sim \left(\left(\Lambda_{ETC}/\Lambda_{TC}\right)^{\gamma_m(\alpha^{\star})}\right)$$

Critical Number of techniflavors

For fermions in the fundamental representation near conformal means:

 $N_f^c \sim {\rm 4}\,N$

The number of techndoublets is

$$N_D = N_f/2$$

Still too large S-parameter

The S-parameter for fermions in the fundamental 3 is

$$S = \frac{N_f N}{12\pi} - \bullet$$
 Appelquist - Sannino

Near conformal for N=2 means $N_f/2=4$ which yields:

$$S_{pert.} = 4/3\pi \sim 0.42$$

Experimentally $S = 0.07 \pm 0.10$

Progress in

Strong Interactions

	`t Hooft	- Large	Ν				
	SU(N)	$U_V(1)$	$U_A(1)$	-			
ψ_c		1	1	_			
$\widetilde{\psi}^c$		-1	1				
G_{μ}	Adj	0	0	~			
				Co	orrigan a	nd Ram	ond `79
					SU(N)	$U_V(1)$	$U_{A}(1)$
	Larks			$\psi_{[i,j]}$		1	1
			,	$\widetilde{\psi}^{[i,j]}$		-1	1
				G_{μ}	Adj	0	0

Relation with Super Yang-Mills

	S-typ	e				A-type		
	SU(N)	$U_V(1)$	<i>U</i> _{<i>A</i>} (1)	=		SU(N)	$U_V(1)$	<i>U</i> _{<i>A</i>} (1)
$\psi_{\{i,j\}}$		1	1		$\psi_{[i,j]}$		1	1
$\widetilde{\psi}^{\{i,j\}}$		-1	1		$\widetilde{\psi}^{[i,j]}$	Ē	-1	1
G_{μ}	Adj	0	0		G_{μ}	Adj	0	0
Armoni-Shifman-Veneziano								
				SU(N)	<i>U</i> _{<i>A</i>} (1)			
			λ	Adj	1	SYM		
			G_{μ}	Adj	0			

Physical world:

Towards small N

QCD vacuum properties, spectrum and confinement Sannino, Sannino-Shifman

N=1 Supersymmetric-Spectrum

Merlatti-Sannino Feo-Merlatti-Sannino

S-type:

Composite Higgs from Higher Representations Sannino

Not ruled out and LCH

Dietrich-Tuominen-Sannino, Hong-Hsu-Sannino, Sannino-Tuominen Evans-Sannino

The New Model

Near conformal for, $N_f \oplus 2$

No FCNC problem + Top mass

OK with precision data.

Light Composite Higgs.

Sannino-Tuominen, hep-ph/0405209 PRD (RC) Hong, Hsu, Sannino, hep-ph/0406200 PLB Dietrich, Sannino and Tuominen, hep-ph/0505059 PRD , hep-ph/0510217 Evans-Sannino, hep-ph/0512080

The Model: The generalized S-Theory

Here Q and \widetilde{Q} are Weyl fermions.

The A-type is obtained by substituting \Box with \square .

Phase Diagram for the S-Theory

Phase diagram as function of N_f and N. [Sannino-Tuominen]

For N=2,3,4,5 we have that $N_f=2$

Minimal-Walking-Theory

$$\begin{pmatrix} U^a \\ D^a \end{pmatrix}_L, \quad U^a_R, \quad D^a_R \qquad a = 1, 2, 3$$

$$\left(\begin{array}{c}N\\E\end{array}\right)_L \qquad N_R \qquad E_R$$

Universal critical number of flavors in the adjoint: Nf=2.075

S-parameter

$$S = \left(\frac{1}{6\pi} - \delta\right) \frac{N(N+1)}{2} \cdot \frac{N_f}{2}$$

- δ ~ 0.013 due to near conformal dynamics [Sundrum-Hsu, Appelquist-Sannino].
- The estimate for **S** in the S-type model is:

$$S(N=2, N_f=2) \simeq 0.1$$

Model versus EWPData

Electron (m2) and Neutrino (m1) Dirac masses.

Standard Hypercharge Assignment

A natural LCH

• Via trace anomaly and the behavior of the underlying beta function near the chiral/conformal phase transition we show:

 $M_H^2(N_f) \propto N_f^c - N_f$

	QCD-like	$\operatorname{WTC}(3, 11)$	$\operatorname{WTC}(2,7)$	S(3, 2)	S(2,2)
$m_H({ m GeV}) \approx$	1000	400	300	170 - 300	90 - 150

Some Predictions and Outlook

- $M_{\rm H} \sim \text{very light}$
- Fourth Family of Leptons around the Z mass.
- 6 light scalars will be observed.
- Electroweak baryogenesis. Possible Strongly First order phase transition.
- Lattice Simulations are starting
- Look at possible DM candidate
- Dynamically EW symmetry breaking is very much alive ③