Algorithm for OCDB Archive DB data reduction

Marian Ivanov

Motivation

- DCS data size
 - Enormous
 - TPC example:
 - 4000 temperature sensors, 1Hz update frequency
 x 4By ~ 60 MBy per hour (typical duration of run)
 - Offline usage direct access → full data volume in memory
- →Compression necessary

- Option 0
 - Reduce the value size by representing it by Byte, Short (according to required precision)
 - Problem small reduction factor (2~4)

- Option 1
 - Perform a global fit on the data and use the fitted analytical function
 - Reduction factor ~ ?
 - Problem unknown analytical behavior of the data (unless we can predict temperature)
 - This unknown function is not very well described by common global approximations i.e polynomial fit (see following slides)

Option 1 – Polynomial fit

- Option 2
 - Local polynomial regression
 - Fit the data on the fixed size intervals with smoothness conditions on the ends
 - Problems:
 - Very small intervals might be needed to adequately describe data – The noise starts to seriously affect the fit

- Option 3
 - Local polynomial regression
 - Fit the data on the variable size intervals with smoothness conditions on the ends
 - The size of intervals is chosen depending on local function behavior
 - Compression factor
 - ~ 100 (for data like typical temperature behavior)

Option 3 – Local polynomial regression

- Option 4
 - Applying stronger smoothness condition
 - Equality of zero and first derivation on the intervals ends Spline fit
 - Compression factor
 - ~ 100 (for data like typical temperature behavior)
 - Smaller residuals than in option 3

AliSplineFit

- Calculation of the intervals according desired precision
 - InitKnots(TGraph * graph, Int_t min, Double_t maxDelta);
 - SplineFit(Int_t nder) fit of the data with spline (the last smooth derivation)
- Eval(Double_t x, Int_t deriv=0) const;

Performance

Option	Sigma of residuals
Option 1 - Polynom n	0.077
Option 3 – local regression	0.012
Box Kernel smooth	0.025
Option 4	0.008

Conclusion

- Local polynomial regression to compress and fit OCDB data implemented
 - Tested on the "simulated" data
 - Soon on CVS
- Next step
 - Use real calibration data