TOF Online Calibration

-Strategy -TOF Detector Algorithm -TOF Preprocessor

October 4th 2006

Silvia Arcelli & Chiara Zampolli

ALICE Offline Week

Online Calibration Strategy

 Determine the relative delays for each TOF channel using the t^{TOF}-t^{exp} spectra

- t^{TOF} = time measured by TOF (T0 subtracted!!)
- t^{exp} = expected time of flight, from TOF geometry, assuming β = 1 and a straight line trajectory

Sharp edge expected at the delay value from fastest particles (β ~ 1)

t^{TOF}-t^{exp}: a closer look at the edge

Fitting of the edge with a Landau distribution

At GEANT level the edge is very sharp.

It is then "smeared" by the TOF time resolution and the IP spread along the z direction.

October 4th 2006

Peak Width

• The Peak Width (averaged over many events) depends on the TOF resolution (σ_{TOF}), on the spread of the interaction vertex along the z direction ($\sigma_{Z,beam}$), and on θ

Calibration Session

Measuring the Edge

- 1. Fitting of the edge (over an appropriate range) with a function, e.g. a Landau.
 - ----- may not be robust in case of low statistics!
- 2. Currently using the mean $< t^{TOF}-t^{exp} > over \sim 320 \text{ ps}$ ($\approx 4 \text{ times } \sigma_{TOF}$) around the edge: edge $\equiv < t^{TOF}-t^{exp} >$
 - the lower limit of the interval is defined by the first four consecutive bins whose total content exceeds the 1% of the total spectrum entries

Determination of the Edge: Results

Dependence on the Number of Entries/Channel

Silvia Arcelli & Chiara Zampolli

Calibration Session

Dependence of the Measured Edge on the Input Delay

Calibration Session

Silvia Arcelli & Chiara Zampolli

October 4th 2006

Dependence on the Number of Events

pp Runs, assuming 10 hits on TOF/MB event

Calibration Session

Silvia Arcelli & Chiara Zampolli

October 4th 2006

TOF DAQ Detector Algorithm (DA)

- The TOF DA will run on the monitoring machines after the events have been built in the GDCs.
- It will run over whole events, or only on sub-events (i.e. fragments of events discussed with DAQ team) containing the TOF and the T0 data.
- It will run during physics runs, during data taking.
- The output file will be a persistent file which will be "updated" run by run.
- It will export the output file via the DAQ FES, which will be then processed by the SHUTTLE for calibration.

TOF DA: Software Development

- The TOF DA being developed in DATE.
- The TOF DA will need ROOT libraries.
- At present, the TOF DA framework is stand-alone wrt to AliRoot: dedicated classes are being written reflecting the TOF geometry and RawData decoding.
- Better to use AliRoot libraries.
- Currently using a TObjArray of TH1C starting point to test the DA.

TOF DA: Test-Benchmarks

~ 160000 (TObjArray of TH1C, nbins = 1500):

- size in memory needed: ~ 400 MB (processing) ÷ ~ 800 MB (when writing to a file, but only at the end of run!)
- time requirements:
 - Time to access the data not yet estimated, dependent on the type of events (whole events/subevents, type of collisions..).
 - Histo filling time/hit on TOF = \sim few µs
- FES space usage: ~ 7 MB to store the TObjArray

TOF DA: Test-Benchmarks with TH1

	TH1C	TH1S	TH1I (500 bins)
Memory during processing	~ 500 MB	~ 500 MB	~ 200 MB
Memory during writing	~ 800 MB	~ 2 GB	~ 1.6 GB
Disk space	~ 7 MB	~ 11 MB	2.4 MB
Time during writing on a file	< 10 s	~ 15 s	~ 10 s

1 TOF pp (PbPb) event ~ 20(75) kB
3h Data Taking, Rate = 100 Hz: ~ 20 GB

October 4th 2006

TOF DA: work in progress

- Under study the possibility to replace the TObjArray with a Tree with a simple C++ 2D array of chars (short ints/ints) [nbins][160000]:
 - less memory needed, less space usage (< 1 MB \div \sim 20 MB), easier access in both write and read mode.

A special thank to Rene Brun...

nbins (both in the case if TH1 and of the C++ array) determined by the maximum relative difference expected between the channels, strongly dependent on the electronics and the hardware components (cables, lengths of the signal lines on the PCBs...): could be substantially reduced firmware (tentative guess: less than 100 bins).

SHUTTLE: TOF Preprocessor

- A TOF preprocessor has been implemented in the Test Suite provided by the Offline Core, both for:
 - USER CASE 1:
 - The algorithm (see previous slides) finding the edge of the
 - $t^{\text{TOF}} t^{\text{exp}}$ distribution has been implemented.
 - 1.2 s to process all the ~ 160000 channels.
 - The output file (~ 300 kB) is written in \$ALICE_ROOT/SHUTTLE/TestShuttle/TestCDB/TOF/Calib/OnlineDelay/

- USER CASE 4:

- The algorithm gets input data from DCS, and process them.
- 1.5 s to process all the 10442 channels.
- The output file (~ 240 kB) is written in \$ALICE_ROOT/SHUTTLE/TestShuttle/TestCDB/TOF/Calib/DCSData/
- Currently the DCS map is simulated as suggested in the Test Suite.
- Dedicated classes written.

TOF Preprocessor: Reference Data

- We would like to save the ~ 160000 histos from DAQ as the TOF Reference Data set.
- Size of Reference Data considerably less than Raw Data size (few MB wrt 20 GB → ~ 0.1%, assuming 3h of pp-MB Runs).
- Stored for the time being in \$ALICE_ROOT/TOF/DELAYS/MON/

TOF: The Calibration GUINEA PIG

Online ■ TOF D/ ■ TOF Pr and Us Referei some s

October 4th 2006

Back-Ups

October 4th 2006

Silvia Arcelli & Chiara Zampolli

ALICE Offline Week