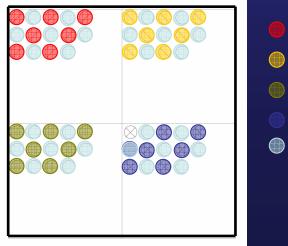
ZDC raw data and detector commissioning

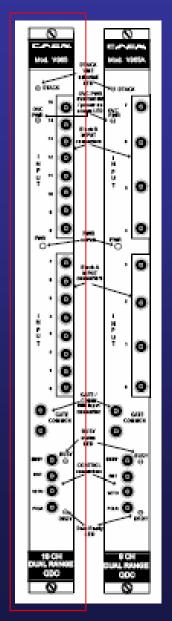
- Schedule of the detector commissioning
- DDL/Equipment ID mapping
- Geometrical mapping
- Raw data reconstruction
- Dependencies on gAlice in raw data reconstruction
- Status of raw data simulation
- Raw data visualization

E. Scomparin for the ZDC group, ALICE Software week, October 2-6 2006

Detector commissioning


- Installation at IP2 foreseen in February 2007
- Following steps
 - General hardware check with laser pulses
 - Pedestal studies with standalone generator trigger
 - Detector characterization with cosmic-ray triggers (to be prepared) → rough calibration
- When beam will be available
 - Accurate calibration with EM-dissociation trigger (either standalone or within normal data taking)
- During commissioning
- Responsible persons for DAQ \rightarrow P. Cortese (Torino),

M. Floris (Cagliari)


• Responsible person for data analysis \rightarrow C. Oppedisano (Torino)

Mapping of channels inside DDL (1)

- Only one DDL for ZDC
- EquipID = (Detector ID) << 8 + DDL index = 3841
- ZDC uses CAEN V965 QDC
 - 16 channel module
 - 2 ADC in parallel per channel
 - 0 ÷ 100 fC and 0 ÷ 800 fC good resolution for small pulses (EMD) no saturation for large pulses (Pb-Pb hadr.)
- Mapping towers vs channels

Mapping of channels inside DDL (2)

	ADC DATA BUFFER								
		ZN, ZP Left							
			2nd ADC module						
	index	channel	channel						
	0	ZN C hg	ZN C hg						
	1	ZP C hg	ZP C hg						
	2	ZN C lg	ZN C lg						
	3	ZP C lg	ZP C lg						
	4	ZN 1 hg	ZN 1 hg						
	5	ZP 1 hg	ZP 1 hg						
	6	ZN 1 lg	ZN 1 lg						
	7	ZP 1 lg	ZP 1 lg						
	8	ZN 2 hg	ZN 2 hg						
	9	ZP 2 hg	ZP 2 hg						
	10	ZN 2 lg	ZN 2 lg						
	11	ZP 2 lg	ZP 2 lg						
	12	ZN 3 hg	ZN 3 hg						
	13	ZP 3 hg	ZP 3 hg						
	14	ZN 3 lg	ZN 3 lg						
	15	ZP 3 lg	ZP 3 lg						
	16	ZN 4 hg	ZN 4 hg						
	17	ZP 4 hg	ZP 4 hg						
	18	ZN 4 lg	ZN 4 lg						
	19	ZP 4 lg	ZP 4 lg						
	20	ZEM 1 hg							
	21	ZEM 2 hg							
	22	ZEM 1 lg	hg = high gain						
4	23	ZEM 2 lg	lg = low gain						

Cabling of channels on the 2 QDC modules

ADC CHANNELS									
	ZN, ZP Right 1st ADC module	ZN, ZP Left 2nd ADC module							
ADC channel	signal	signal							
0	ZN C	ZN C							
1	ZN 1	ZN 1							
2	ZN 2	ZN 2							
3	ZN 3	ZN 3							
4	ZN 4	ZN 4							
5	ZEM 1								
6									
7									
8	ZP C	ZP C							
9	ZP 1	ZP 1							
10	ZP 2	ZP 2							
11	ZP 3	ZP 3							
12	ZP 4	ZP 4							
13	ZEM 2								
14									
15									

This part is ready and already implemented

Inside DDL

Mapping of channels inside DDL (3)

- Two more QDC modules could be used for ZDC
- Contain ancillary info used for pedestal subtraction
- Still to be added in the framework
- No difficulty foreseen (same cabling as for the two existing modules)

Status of raw-data reconstruction

Reconstruction can be performed starting from:

Digits

```
// *** Local ZDC reconstruction for digits
Float_t meanPed[47];
for(Int_t jj=0; jj<47; jj++) meanPed[jj] = fCalibData->GetMeanPed(jj);
AliLoader* loader = runLoader->GetLoader("ZDCLoader");
if (!loader) return;
loader->LoadDigits("read");
loader->LoadRecPoints("recreate");
```

void AliZDCReconstructor::Reconstruct (AliRunLoader* runLoader) const

Raw data

AliRawReader* rawReader) const // *** Local ZDC reconstruction for raw data Float_t meanPed[47]; for(Int_t jj=0; jj<47; jj++) meanPed[jj] = fCalibData->GetMeanPed(jj); AliLoader* loader = runLoader->GetLoader("ZDCLoader"); if (!loader) return; loader->LoadRecPoints("recreate"); // Event loop

void AliZDCReconstructor::Reconstruct (AliRunLoader* runLoader,

• NO preprocessing needed on raw-data

Dependence on gAlice External parameters (1)

- Dependences on Galice in raw data reconstruction are not present
- Still some hardwired parameters are present in the code
- In AliZDCReconstructor::ReconstructEvent
- Factor to go from ADC channels to photoelectrons
 - Float_t convFactor = 0.08 (from ADC specifications + PM gain)
- Possible way out
 - ADC specifications are fixed (could remain hardwired)
 - PM gain could be obtained on a run per run basis from
 - PM HV read from DCS +
 - gain vs HV histo stored in "reference" DB (22 TH1F)

Dependence on gAlice External parameters (2)

- Still in AliZDCReconstructor::ReconstructEvent
- Factor to go from photoelectrons to energy

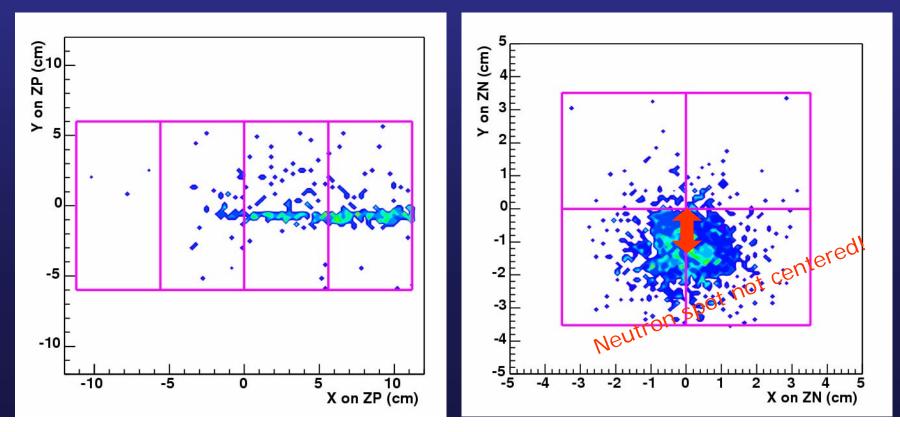
Float_t znlphexTeV=329., zplphexTeV=369., zn2phexTeV=329., zp2phexTeV=369.;
(obtained from simulation)

- Possible solution
 - Use EMD dissociation events to directly get the link ADC channels ↔ Energy

by using the one neutron-proton peak at 2.7 TeV

- Store the coefficient extracted from these events in CDB
- Works for Pb-Pb (technical issues on EMD trigger now under discussion)
- For pp impossible to get absolute energy calibration
 - MC info needed

Dependence on gAlice External parameters (3)


- AliZDCReconstructor::ReconstructEvent also gives an estimate of N_{part} and b, from the detected energy
- Based on HIJING (simulations from Chiara's thesis)
- Implemented through 6 TF1, now in the constructor of the class

```
AliZDCReconstructor:: AliZDCReconstructor()
  // **** Default constructor
                 Number of generated spectator nucleons and impact parameter
  // [1] ### Results from a new production -> 0<b<18 fm (Apr 2002)</pre>
  // Fit results for neutrons (Nspectator n true vs. EZN)
  fZNCen = new TF1("fZNCen",
       "(-2.287920+sqrt(2.287920*2.287920-4*(-0.007629)*(11.921710-x)))/(2*(-0.007629))", 0., 164.);
  fZNPer = new TF1("fZNPer",
       "(-37.812280-sqrt(37.812280*37.812280-4*(-0.190932)*(-1709.249672-x)))/(2*(-0.190932))", 0., 164
.);
  // Fit results for protons (Nspectator p true vs. EZP)
  fZPCen = new TF1("fZPCen",
        "(-1.321353 + \text{sqrt}(1.321353 + 1.321353 - 4*(-0.007283)*(3.550697 - x)))/(2*(-0.007283))", 0., 60.);
  fZPPer = new TF1("fZPPer",
       "(-42.643308 - \text{sqrt}(42.643308 + 42.643308 - 4*(-0.310786)*(-1402.945615 - x))))(2*(-0.310786))", 0., 60.
  // Fit results for total number of spectators (Nspectators true vs. EZDC)
  fZDCCen = new TF1("fZDCCen",
       "(-1.934991+sqrt(1.934991*1.934991-4*(-0.004080)*(15.111124-x)))/(2*(-0.004080))", 0., 225.);
  fZDCPer = new TF1("fZDCPer",
       "(-34.380639-sqrt(34.380639*34.380639-4*(-0.104251)*(-2612.189017-x)))/(2*(-0.104251))", 0., 225
```

- Will be tuned directly on the data
- Where should they stay ?

Other issues

- Raw data visualization is not very useful for the ZDC
 - No particular topology for the single event \rightarrow all towers hit)
- Need to integrate over several events to get relevant info
- We plan to use 2-dim histos filled with the centroid position (Y vs X) for each detector

Status of milestones

Commissionning	Provide commissionning schedule and persons in charge of DAQ and data analysis	3-Oct-06	LATE	LATE	3-Oct-06	ОК
Hardware	Provide DDL to equipment ID mapping	3-Oct-06	LATE	LATE	3-Oct-06	OK
mapping	Provide Geometrical mapping	3-Oct-06	LATE	LATE	3-Oct-06	
	Status of raw-data reconstruction	3-Oct-06	LATE	LATE	3-Oct-06	ОК
Reconstruction	Removal of dependencies on gAlice (AliRun)	3-Oct-06	LATE	LATE	3-Oct-06	Hardwired parameters to be removed
	Status with raw-data format	3-Oct-06	LATE	LATE	3-Oct-06	ОК
Simulation	Implement Raw2(S)Digits for event embedding	3-Oct-06	LATE	LATE	3-Oct-06	To be done
Visualisation	Raw data visualisation within the aliroot event display (EVE)	3-Oct-06	LATE	LATE	3-Oct-06	?