Status of the Alice magnetic field analysis

R.Shahoyan, 05/10/06

Field reconstruction method

From $\vec{\nabla} \times \vec{B}=0$ and $\vec{\nabla} \cdot \vec{B}=0$ it follows that each field component must be solution of Laplace equation $\Delta B_{i}=\partial_{i}(\vec{\nabla} \cdot \vec{B})=0$

Classical method due to H.Wind [NIM 84, (1970), 172-124] is

- fit the dominant field component by function with zero Laplacian to the date measured on the surface of the volume where the field is needed
- obtain by its integration the scalar potential Ψ
- compute all components as $\vec{B}=\vec{\nabla} \Psi$

Advantage of the fitting the surface only is because the solution of Laplace equation has its extremum on the surface. Since both fitted and real field have 0 Laplacian, their difference (i.e. the error of the computed field because of the measurement errors) being also solution of Laplace equation, will have its maximum on the surface. Thus the fitted field inside the volume can be (in principle) more precise than the direct measurement.

In the cylindrical coordinates the general solution of Laplace equation may be written as:

$$
\Psi(r, \varphi, z)=\sum_{m, k} C_{m k}\left\{\begin{array}{c}
\sin (m \varphi) \tag{1}\\
\cos (m \varphi)
\end{array}\right\}\left\{\begin{array}{c}
\cosh (k z) \\
\sinh (k z)
\end{array}\right\} J_{m}(k r)+\sum_{m, k} D_{m k}\left\{\begin{array}{c}
\sin (m \varphi) \\
\cos (m \varphi)
\end{array}\right\}\left\{\begin{array}{c}
\sin (k z) \\
\cos (k z)
\end{array}\right\} I_{m}(k r)
$$

Terms with J_{n} (Bessel function of the I kind) are for the boundary condition $\mathrm{B}_{\mathrm{z}}=0$ on the cylinder surface, while I_{n} (modified Bessel function of the I kind) are for $\mathrm{B}_{\mathrm{z}}=0$ on the endplates
For details: R,Ganci, IT-ASD W1029-W1030,
R.Ganci and A.Melissinos, CBX-80-53 (CLEO magnet mapping)

There is an obsolete CERN program MAGFIT (R.Ganci, H.Wind, W1029/W1030 and W1043) which was performing such a fit in cylindrical coordinates. However it had certain restrictions and limited precision.
Using it as a prototype a new fitting code was written in C++.
Since the data may be biased due to the probes alignment/inclinations, simple fit to data is not enough.

1) Fit the surface (cylinder +2 endplates) to measured (adjusted) data according to (1)
2) Compute all field components at all measured points (including those inside the volume): the errors of the measured field (apart from the proper probes errors) are (say at $\varphi=0$):
$\frac{\delta B_{Z}^{M}}{B_{Z}} \sim \frac{\left(\theta^{2}{ }_{X}+\theta^{2}{ }_{Y}\right)}{2}+\frac{B_{R}}{B_{Z}} \theta_{X}+\frac{B_{\theta}}{B_{Z}} \theta_{Y} ; \quad \frac{\delta B_{R}^{M}}{B_{R}} \sim \frac{B_{Z}}{B_{R}} \theta_{Y}+\frac{B_{\varphi}}{B_{R}} \theta_{X} ; \quad \frac{\delta B_{\varphi}^{M}}{B_{\varphi}} \sim \frac{B_{Z}}{B_{\varphi}} \theta_{X}+\frac{B_{R}}{B_{\varphi}} \theta_{Y} ;$
where $\theta_{X, Y}$ are the overall inclination angles of the probe wrt X and Y axes ($\sim 10^{-3} \mathrm{mrad}$), while for the computed field all relative errors are those of B_{z}. Since $B_{z} \gg B_{R}$ and B_{φ}, the transverse components of the calculated field are much more precise than the measured ones.
3) Correct the measured data by matching its transverse components to computed ones by varying:

- angles of the rotation plane of the arm wrt the plane normal to the Z axis
- angles of the each probe wrt its ideal position on the arm at each Z step
- calibration of the probe (restricted to be within 1 Gauss)

Method works with the test field ($\sim 10^{-5}$ precision)

Only Bz on the surface is fitted, all components inside the volume are computed from the reconstructed ψ

Caveat: Ψ is obtained by integration of B_{z} by $Z \Rightarrow$

$$
\Psi(r, \varphi, z)=\int B_{Z}(r, \varphi, z) d z+\psi(r, \varphi)
$$

\Rightarrow if there are z-independent transverse components, they cannot be derived from the B_{z}, but should be fitted separately to data.

Sources of Z independent components:

$>$ currents along the Z axis (due to the helix-like winding of the solenoid, current return buses etc.)
$>$ fit in the restricted region whose center does no coincide with the symmetry plane of the field: for the component like $B_{R}=C\left(Z-Z_{0}\right)$ only $B_{R}=C Z$ part can be reconstructed from the Ψ obtained from B_{Z}. Need to apply certain constraints to disentangle such components from probe misalignment effects.

Problem: Because of the probes tilt fake transverse components appear. Data alone cannot remove the ambiguity between the real Z-independent field and the effect of the tilts \Rightarrow need to apply an ad-hoc contraints.

For the solenoid the transverse components should vanish close to the axis \Rightarrow require that there is no (r, φ, z) constant dipole component (i.e. any transverse field on the axis is due to the tilts)

Cleaned data: list of files containing at least 1 Z position with full scan in φ
Total Z coverage: $-343<Z<499 \mathrm{~cm}, R<423 \mathrm{~cm}$

	1 ld	Original name	Current	Pos	Nprobe	Zmin	Zmax	Nphi	PhiMin	hiMax	Time	List of complete Z positions	TASK FILE
										Start	End		
A		4 L312kAPOSRB26.dat	12000	1	30	-343.173	76.827	121	0	360	30/07/2005 04:38:27	0_20_40_60_80_100_120_140_160_180_200_220_240_260_280_300_320_340_360_380_400_	p12_p1A
B		\|13-30ka.dat	30000	1	128	-343.173	-123.173	121	0	360	20/08/2005 02:09:10	0_20_40_60_80_100_120_140_160_180_200_	m30_p1A
B		13---30ka.dat	30000	1	128	-343.173	-123.173	121	0	360	20/08/2005 08:22:41	0_20_40_60_80_100_120_140_160_180_200	
B	9	L3-30kA0to1.dat	30000	1	128	-343.173	-243.173	121	0	360	22/08/2005 21:57:24	0_20_40_60_80_	
B	10	13-30ka0-1.dat	30000	1	128	-343.173	-303.173	121	0	360	23/08/2005 01:00:06	0-20	
B	11	1 13-30ka0-1. dat	30000	1	128	-343.173	-243.173	121	0	360	23/08/2005 02:24:08	0_20_40_60_80_100	
B	13	3 L3-30ka1-2.dat	30000	1	128	-243.173	-163.173	121	0	360	23/08/2005 08:40:58	100_120_140_160-	
B	12	L3-30kA1--2.dat	30000	1	128	-243.173	-143.173	121	0	360	23/08/2005 12:24:04	100_120_140_160_180_200	
B	14	13-30ka2-3.dat	30000	1	128	-143.173	-43.173	121	0	360	23/08/2005 15:48:46	200_220_240_260_280_300-	
B	16	L3-30kA2.8.dat	30000	1	128	-63.173	-63.173	121	0	360	24/08/2005 12:30:58	280	
B	17	7 L3-30kA3.00.dat	30000	1	28	-43.173	-43.173	121	0	360	24/08/2005 13:02:10	300	
B	18	L3-30kA3.2.dat	30000	1	128	-23.173	-23.173	121	0	360	24/08/2005 13:33:56	320	
B	19	L3-30kA3.4.dat	30000	1	128	-3.173	-3.173	121	0	360	24/08/2005 14:05:41	340	
C	21	L L3+12kapos2_0.dat	12000	2	28	-46.173	-46.173	121	0	360	25/08/2005 19:15:22	0	p12_p2
C	22	L3+12kapos2_0.2.dat	12000	2	28	-26.173	-26.173	121	0	360	25/08/2005 19:53:48	${ }^{20}$	
C	23	L3+12kapos2_0.4.dat	12000	2	28	-6.173	-6.173	121	0	360	25/08/2005 20:25:35	40^{-}	
C	24	L3+12kapos2_0.6.dat	12000	2	28	13.827	13.827	121	0	360	25/08/2005 20:58:42	60	
C	25	L3+12KAPOS2_08.dat	12000	2	28	33.827	33.827	121	0	360	25/08/2005 22:20:45	80-	
C	26	L3+12kApos2_1.dat	12000	2	28	53.827	53.827	121	0	360	25/08/2005 22:55:31	100	
C	28	L312kapos2_1.2_next.dat	12000	2	28	73.827	73.827	121	0	360	25/08/2005 23:58:32	120_	
C	29	L3+12kApos2_1.4.dat	12000	2	28	93.827	93.827	121	0	360	26/08/2005 01:02:59	140 -	
C	30	L3+12kApos2_1.6.dat	12000	2	28	113.827	113.827	121	0	360	26/08/2005 01:36:28	$160-$	
C	31	L3+12kApos2_1.8.dat	12000	2	28	133.827	133.827	121	0	360	26/08/2005 02:09:13	180	
C	32	L3+12KApos2_2.dat	12000	2	28	153.827	153.827	121	0	360	26/08/2005 02:41:04	200-	
C	33	L3+12kApos2_2.2.dat	12000	2	28	173.827	173.827	121	0	360	26/08/2005 03:13:23	220_	
C	34	L3+12kApos2_2.4.dat	12000	2	28	193.827	193.827	121	0	360	26/08/2005 03:45:30	240	
C	36	L3+30kApos2_0.dat	30000	2	28	-46.173	-46.173	121	0	360	26/08/2005 12:51:45	$0-$	p30_p2
C	37	L3+30kApos2_0.2.dat	30000	2	28	-26.173	-26.173	121	0	360	26/08/2005 13:22:37	20-	
C	38	L3+30kApos2_0.4.dat	30000	2	28	-6.173	-6.173	121	0	360	26/08/2005 13:57:01	40-	
C	39	L3+30kApos2_0.6.dat	30000	2	28	13.827	13.827	121	0	360	26/08/2005 14:28:43	60	
C	40	L3+30kApos2_0.8.dat	30000	2	28	33.827	33.827	121	0	360	26/08/2005 15:00:40	80-	
C	41	L3+30kApos2_1.dat	30000	2	28	53.827	53.827	121	0	360	26/08/2005 15:32:32	100	
C	42	L3+30kApos2_1.2.dat	30000	2	28	73.827	73.827	121	0	360	26/08/2005 16:07:37	120_	
C	43	L3+30kApos2_1.4.dat	30000	2	28	93.827	93.827	121	0	360	26/08/2005 18:24:39	140-	
C	44	L3+30kApos2_1.6.dat	30000	2	28	113.827	113.827	121	0	360	26/08/2005 18:57:20	$160-$	
C	45	L3+30kApos2_1.8.dat	30000	2	28	133.827	133.827	121	0	360	26/08/2005 19:30:00	180-	
C	46	L3+30kApos2_2.dat	30000	2	28	153.827	153.827	121	0	360	26/08/2005 20:02:56	200-	
C	48	L3+30kApos2_2.2next.dat	30000	2	28	173.827	173.827	121	0	360	26/08/2005 21:14:05	220	
C	49	L3+30kApos2_2.4.dat	30000	2	28	193.827	193.827	121	0	360	26/08/2005 21:53:38	240	
C	50	L3+30kApos2_2.6.dat	30000	2	28	213.827	213.827	121	0	360	26/08/2005 22:27:45	260	
D	51	L L3-12kapos2_Oto2.6.dat	-12000	2	21	-46.173	13.827	121	0	360	04/09/2005 08:38:52	0_20_40_	m12_p2A
D	52	L3-30kapos2_0to2.4.dat	-30000	2	20	-46.173	193.827	61	0	360	07/09/2005 17:55:39	0_40_80_120_160_200_240	
E	61	13-12kapos3z0.8.dat	-12000	3	327	233.827	393.827	61	0	360	12/09/2005 21:11:51	80_120_160_200_240_	m12_p3A
J	93	\|3+12kapos3V.dat	12000	3	31	153.827	393.827	121	0	360	01/10/2005 20:08:28	0_20_40_60_80_100_120_140_160_180_200_220_240_	p12.p3
J	94	4 13+30kapos3V.dat	30000	3	31	273.827	393.827	121	0	360	02/10/2005 03:38:03	140_160_180_200_220_240	p30_p3
J	96	13+30kapos3V-z1.0-0.dat	30000	3	31	153.827	253.827	121	0	360	02/10/2005 08:16:51	0_20_40_60_80_100-	
J	97	13-30kapos3V.dat	-30000	3	31	153.827	393.827	121	0	360	02/10/2005 14:04:08	0_20_40_60_80_100_120_140_160_180_200_220_240_	m30_p3
J	98	\|3-12kapos3V.dat	-12000	3	31	153.827	393.827	121	0	360	02/10/2005 22:31:38	0_20_40_60_80_100_120_140_160_180_200_220_240_	m12_p3
K	99	13-12kapos2v.dat	-12000	2	31	-46.173	-26.173	121	0	360	07/10/2005 23:38:48	0	m12_p2
K	100	13-12kapos2V1z0.2p306too.dat	-12000	2	31	-26.173	-26.173	103	0	306	08/10/2005 01:00:05	20	
K	101	\|13-12kapos2VIz0.4to2.48.dat	-12000	2	21	-6.173	201.827	121	0	360	08/10/2005 01:14:44	40_60_80_100_120_140_160_180_200_220_240_248_	
K	102	13-30kapos2V.dat	-30000	2	21	53.827	201.827	121	0	360	09/10/2005 01:00:00	120_140_160_180_200_220_240_248_	m30_p2
K	103	\|3-30kapos2z0-1V1.dat	-30000	2	21	-46.173	53.827	121	0	360	09/10/2005 09:16:02	0_20_40_60_80_100-	
K	104	\|3+12kapos2V1.dat	12000	2	21	-46.173	133.827	121	0	360	09/10/2005 15:06:54	0_20_40_60_80_100_120_140_160_180_	current unstable
L	107	13+12kapos4.dat	12000	4	41	359.327	499.327	121	0	360	12/10/2005 22:14:08	O_40_80_120_130_140_	p12 p4
L	108	\|3+30kapos4.dat	30000	4	41	359.327	499.327	121	0	360	13/10/2005 01:40:00	0_20_40_60_80_100_110_120_130_140	p30_p4
M	109	\|3+12kapos1V.dat	12000	1	131	-343.173	-83.173	121	0	360	14/10/2005 16:20:06	0_20_40_60_80_100_120_140_160_180_200_220_240_260_	p12.p1
M	110	13+30kapos1V.dat	30000	1	131	-343.173	-83.173	121	0	360	15/10/2005 01:00:01	0_20_40_60_80_100_120_140_160_180_200_220_240_260_	p30_p1
M	111	\|3-12kapos1V.dat	-12000	1	$1{ }^{1}$	-343.173	-83.173	121	0	360	15/10/2005 18:38:22	O_20_40_60_80_100_120_140_160_180_200_220_240_260_	m12_p1
M	112	13-30kapos1v.dat	-30000	1	131	-343.173	-83.173	121	0	360	16/10/2005 12:55:42	0_20_40_60_80_100_120_140_160_180_200_220_240_260_	m30_p1

Each color is for the different setting of the measuring machine. 21 sets of data (some overlapping) were selected from 109 data files

Problems in the data

- ID's of some probes are corrupted: these probes are identified by their pedestals/gain pattern.
- Some probes from time to time are changing their calibration values or produce random data: these probes were ignored in all data files
- The probes are fixed on the arm with some tilt (up to 30 mrad!), leading to fluctuations of thr measured values as a function of R : accounted in the fit by rotational degrees of freedom unique for each probe.
- The movement of the measuring machine on the rails was not uniform: each step in Z has certain tilt θ_{Y} wrt Y axis. This leads to fake horizontal dipole component: this tilt was measured during the scan (ZSkewing) but strongly differs from the fitted one. Accounted as extra degrees of freedom for each Z step.
- There was also tilt θ_{x} wrt X axis, leading to fake vertical dipole component.

There is a contradiction between the survey data from EDMS616573 (18/07/05), which seen no tilt and EDMS679908 (10/11/05) with $\theta_{x}-5.5$ mrad: accounted in the fit in a same way as for Y axis.

- Data shows a small (~ 1 Gauss) maximum in Bz close to the L3 axis, where the minimum is expected: not solved
- Uncertainty in the initial Z position of the machine (data from different Z scans don't match each other) fit Z position + input from H.Taureg?

Tilts: degrees of freedom for correcting the data

Is there a single rotation plane or the axis of the arm was precessing?

Data of Maln and Opp. Arms agree wlthln ~1.5 Gauss

The probes of the "opposite arm" at arm position φ should measure the same field as the probes of the "main arm" at $\varphi+\pi$ (the difference due to the probes own tilts and calibration should not depend on φ)

Tilts: degrees of freedom for correcting the data

The tilt angle depends on the position of the arm!

Tilts: degrees of freedom for correcting the data

The tilt angle depends on the position of the arm!

Even worse: it depends on R \Rightarrow the arms were bent!

Tilts precession is corrected at each φ, Z step

The remaining constant difference between the "Main" and "Opp" arms measurements is because of the probes own tilt and is corrected separately

BR_194_180_Z0_raw_task_L3_J0_p3_p12.dat

BR_194_180_Z1_raw_task_L3_J0_p3_p12.dat

Spike in Bz close to arm rotation axis: the fit in Bz is very good for all probes except the ones at $\mathrm{R}=23 \mathrm{~cm}$
Appears at $\sim 3 / 2 \pi$ where the probe is at the shortest distance from the L 3 axis \Rightarrow the minimum of Bz .

- Instead of the minimum a small bump of ~ 1 Gauss is observed.
- The spike is independent in Z but scales with the L3 current.
- Impossible to fit with $\Delta \Psi=0$ model (Tosca also does not see any maximum)

Mismatch between the measurements in different Z windows (note: Bz is very stable (<1Gauss variations) against all tilts and calibration problems)

To do:

L3 map

$>$ Spike at small R's : disregard?
$>$ Global fit of the data in different Z ranges ($1^{\text {st }}$ version works but may need some improvements). Hopefully this will solve the question of the magnitude of Z-independent transverse terms. The real solution would be just a few precise measured points with well aligned probe!
> Putting together the fits from different Z ranges:

1. filling the gaps where the field was not measured
2. rescaling different data sets to have the field continuous (eliminate the changes in the current, residual magnetization of the iron ...)
3. Need precise positions of end-switches for each of 4 Z ranges (H.Taureg will check in his records)
$>$ Fitted field calculation by model (1) is very slow: ~ 1000 terms with Bessel, hyperbolic or trigonometric functions \Rightarrow a few msec./point on 2 GHz Centrinoll CPU.
Once the functions are defined interpolate them Chebyshev polynomials (standard technique) \Rightarrow orders of magnitude faster.

L3 map should be ready in a few weeks

Dipole

For the moment only the "lost probes address" recovery is done.
Implement a field fitting model for Cartesian coordinates.
Data cleaning/selection

Corrected data - Calculation (Gauss), -30kA, - $46<Z<202$ cm

-30kA, Z~400 cm, field (Tesla) vs R, φ

What to put in Aliroot?

Field reconstruction from potential fit is very CPU demanding (sum of >1000 terms..): $\sim 10 \mathrm{~ms} /$ point with good processor \Rightarrow not appropriate for use in the software.

Alternatives:

1) Generate field on the grid and use (linear) interpolation:
\checkmark already implemented in Aliroot
\checkmark very fast: $-3 \mu \mathrm{~s} /$ point
\times memory consuming: field gradients of ~ 0.1 Gauss $/ \mathrm{cm} \Rightarrow 10 \mathrm{~cm}$ steps to have 1 Gauss prec. $\Rightarrow>0.6 \mathrm{M}$ points to cover central part of $\mathrm{L} 3(\mathrm{R}<4.5,-5<\mathrm{Z}<5 \mathrm{~m}) \Rightarrow>7 \mathrm{MB}$ just for L3.
2) Use fast Chebyshev parameterization, which can guarantee any requested precision:
\checkmark already implemented as separate class, trivial to insert to Aliroot
\checkmark very compact: just few 10 kB.
x slower: $\mathbf{\sim 3 0} \mu \mathrm{s} /$ point if 0.1 Gauss precision is requested, $\sim \mathbf{1 4} \mu \mathrm{s} /$ point for 1 Gauss .
May be reduced by factor 2-3 by splitting the volume in few pieces.

Modifications in the Alice Tosca model:

- Tilt of the dipole part
- Added the support frames of L3 doors and the air gaps between them (still there are some problems to solve with meshing of fine details)
- Reassigned BH curves of the dipole, frames and L3 filling iron to measured ones
- Separate calculation will be done with new access hole on L3 door

"Model_with_Hole" - "Model_with_Plug (no hole)", Gauss fields difference in the plane passing through the hole and L3 axis

Summary

\checkmark L3 field analysis is finished in each of 4 measured regions:
\checkmark precision ~1 Gauss.
\checkmark fast and compact (Chebyshev) parameterization is ready.
\checkmark missing the information about exact Z position of each region to put together different pieces.
\checkmark Tosca calculations with measured material properties and details of the setup are in progress.
Still, the precision is not supposed to be better than 1%.
\checkmark Dipole field analysis:
\checkmark preliminary data cleaning was done by A.Morsch.
\checkmark recovery of lost probes is done.
\checkmark correction of alignment and parameterization: still to be done.
\checkmark missing the measurement geometry information for some part of data.

Test of zero Laplacian for computed field:

Compute for each component: $G(\delta)=B-[B(x+\delta)+B(x-\delta)+B(y+\delta)+B(y-\delta)+B(z+\delta)+B(z-\delta)] / 6$ In the expansion vs. δ all odd terms disappear: $\quad G(\delta)=\frac{\delta^{2}}{2!} \nabla^{2} B+\frac{\delta^{4}}{4!} \nabla^{4} B+O\left(\delta^{6}\right)$
Thus, if $\quad \Delta B=0$, the logarithmic slope $\frac{d \ln |G(\delta)|}{d \ln \delta} \approx 4$

Single probe stability check

Single probe stability check

Real single probe fluctuations: $\frac{\sigma}{\sqrt{2}} \rightarrow \sim 0.1$ Gauss

Probe to probe fluctuations

Example of fit w/o tilts correction, $\mathrm{A}=-12 \mathrm{kA}$

φ-dependence, at $\mathrm{R}=423 \mathrm{~cm}, \mathrm{Z} \sim 0 \mathrm{~cm}$ (in Alice frame)

Note that only B_{z} is fitted to data, other components are deduced from the reconstructed potential.
The oscillations in the B_{R} and B_{φ} components are due to the measurements tilt?

