

LHC luminosity upgrade: detector challenges

Lecture 2: Semiconductor detectors

D. Bortoletto

Outline

- Tracking requirements for the LHC
- Principles of operation of semiconductor detectors (4 slides)
- Radiation damage (6 slides)
- What did learn from the LHC detectors for the SLHC challenges (lower power, less mass, higher radiation tolerance and higher speed performance)
- Strategies to improve semiconductor detectors:
 - □ New materials
 - Defect engineering
 - □ New structures
 - Optimization of operation conditions
- Electronics and integration issues
- Detector specific R&D and a snapshot to the future

Tracking requirements for the LHC

- Bunch spacing of 25ns ⇒ fast detector response to resolve bunch crossings
- High luminosity: 10³³-10³⁴ cm⁻² s⁻¹ up to 20 minimum bias/bunch crossing
 high detector granularity to keep occupancy low and resolve nearby tracks
- Excellent momentum resolution for low and high p_T tracks
- High track reconstruction efficiency
- Ability to tag b-jets and identify B-hadrons and τ's
 Excellent impact parameter resolution
- Unprecedented irradiation level \Rightarrow radiation hardness
 - •Operating T \approx -10° C to minimize radiation damage
 - •Dose at 4 cm after 10 years: 500 fb⁻¹~3×10¹⁵ cm⁻²
 - Dose at 22 cm after 10 years: 500 fb⁻¹~1.5×10¹⁴
- Small amount of material in front of electromagnetic calorimeter
- Risk of failure (preference for known industrial technologies) and cost

H→bb LHC high Iumi

Tracking requirements for the SLHC

- Bunch spacing of 25ns (12.5 ns?) ⇒ fast detector response to resolve bunch crossings
- High luminosity: 10³³-10³⁴ cm⁻² s⁻¹ (10³⁵ cm⁻² s⁻¹) up to 20 minimum bias/bunch crossing (100 minimum bias/bunch crossings)
 - high detector granularity to keep occupancy low and resolve nearby tracks
- Excellent momentum resolution for low and high p_T tracks
- High track reconstruction efficiency
- Ability to tag b-jets and identify B-hadrons and τ's
 Excellent impact parameter resolution
- Unprecedented irradiation level \Rightarrow radiation hardness
 - Operating T \approx -10° C to minimize radiation damage
 - Dose at 4 cm after 10 years: 500 fb⁻¹~3×10¹⁵ cm⁻² (3000 fb⁻¹~1.8×10¹⁶ cm⁻²)
 - Dose at 22 cm after 10 years: 500 fb⁻¹~1.5×10¹⁴ cm⁻²(3000 fb⁻¹~9×10¹⁵ cm⁻²)
- Small amount of material in front of electromagnetic calorimeter
- Risk of failure (preference for known industrial technologies), cost LHC luminosity upgrade
 Daniela Bortoletto

CMS tracker

- About 200m² of active silicon area
- 1440 pixel modules with 66 million pixels
 - \Box Pixel size: 100µm (r- ϕ) x 150µm (r-z),
 - □ Charge sharing due to large Lorentz angle (23°) + analog readout
 - \square spatial resolution ~10µm in r- ϕ , ~20µm in r-z
- 15148 silicon strip modules ~10 million strips

- Semiconductor tracker (SCT):
 - \Box 4 barrel layers, 2 x 9 disks; 4088 modules, 61m²
 - \Box All modules are double sided (2.3°)
- Transition radiation tracker (TRT):
 - \Box 370 000 drift tubes; spatial res. from drift time: 170µm per straw
 - Continuous tracking (> 30 hits per track), low cost, less material per point

B=2T

 $\sigma(p_T)/p_T \sim 2 [\sigma(p_T)/p_T]_{CMS}$

- □Electron/pion separation
- □Concerns: occupancy, speed (maximal drift time: 40ns)

A silicon detector

Reversed biased p-n junction to establish region with no mobile carriers

$$V_{dep} = \frac{q_0}{\varepsilon \varepsilon_0} |N_{eff}| d^2 |N_{eff}| = |N_D - N_A|$$

Increase external reverse bias

□ Increase E field \Rightarrow e⁻ and h drift to electrodes □ Increase depletion region size

□ Reduce capacitance $\approx \epsilon \epsilon_0 A/d$ (Measurement of C yields full depletion voltage)

□ Small current flow Daniela Bortoletto

Single sided detectors

- Make several p-n junctions by segmenting the p+ layer into strips
- Connect the strips to individual readout channels

300 μm n-type silicon, ρ =2Km.cm (N_D≈2.2× 10¹² cm⁻²) \Rightarrow V_d=150V p=50 μm \Rightarrow σ ~ 14.4 μm

- Detector size
 - limited by wafer size < 15cm diameter
- Signal speed
 - <E> \approx 150V/300 μm
 - p-type strips collect holes v_{hole} ≈ 15 µm/ns
- Connect amplifier to each strip
 - can also use inter-strip capacitance ⇒ reduce number of amplifiers to share charge over strips
- Spatial measurement precision
 - defined by strip dimensions and readout method $\sigma {=} p / \sqrt{12}$

8

- ultimately limited by charge diffusion σ ~ 5-10 μm

Double sided detectors

• Segment both n and p-side \Rightarrow 2D

- Problem electron accumulation layer
 - □n⁺ strips are not isolated because of an accumulation layer at Si-SiO₂ interface due to positive charges in the SiO₂ layer
- Solution:
 - p-strips between n-strips (p-stops)
 - Moderate p-implantation over the all surface (p-spray)
 - Metal at negative potential over n⁺ strips to repel electrons (field plates)
- These isolation techniques are also used in n+ on n detectors . Advantage v=μE: μ_e= 1350 cm² / V·s>> μ_h= 450 cm² / V·s

S/N before irradiation

- Collected charge usually given for Minimum Ionizing Particle (MIP):
 - □Mean dE/dx)_{Si} = 3.88 MeV/cm⇒116 keV for 300 μm thick Si
 - □Most probable loss = 81 keV for 300 μm Si
 - □Since 3.6eV needed to make e-h pair ⇒ charge in 300 μ m= 22500 e⁻ (=3.6 fC)
- Landau distribution has a low energy tail which broadens because of noise.
 - ■Noise sources:
 - \blacksquare Capacitance ENC \propto C_d
 - Leakage Current ENC $\propto \sqrt{I}$
 - Thermal Noise ENC $\propto \sqrt{(kT/R)}$

```
Typical Values S/N > 10-15
```


Bulk Damage-Microscopic view

- Bulk damage is mainly from hadrons displacing primary lattice atoms:
 - Vacancies, silicon interstitials, and large disordered regions
 - 1 MeV neutron transfers ≈60-70 keV to recoiling silicon atom, which in turn can displace clusters
- Defects can recombine or migrate through the lattice to form more complex and stable defects
 - Annealing can be beneficial

 Defects can be stable or unstable
 Defects add levels in the band gap affecting macroscopic properties: N_{eff}, trapping and leakage current

Surface Damage

- Surface damage generation:
 - Ionizing radiation creates e-h pairs in SiO₂
 - Many recombine, electrons migrate quickly, holes slowly migrate to Si/SiO₂ interface since μ_{hole} << μ_{electron}
 - Some holes 'stick' in the boundary layer
- Surface damage results in
 - Increased interface trapped charge
 - Increased fixed oxide charges
 - Surface generation centers
- Macroscopic effects
 - Increase in the sensors capacitance
 - **Decrease in the interstrip resistance**
 - Surface current
 - Risk to readout electronics
 - threshold shifts
 - noise and gain deterioration

Metal (Al) Oxide (SiO₂) Interface (SiO_x) Semiconductor (Si)

After electron transport:

After transport of the holes:

Effective doping concentration

Most irradiation damages in the Si behave like acceptors \Rightarrow "Hamburg" model

$$\begin{vmatrix} N_{eff} (\Phi_{eq}, t, T) \\ = \begin{vmatrix} N_D - N_A \end{vmatrix} = \\ \hline N_a (\Phi_{eq}, t, T) & \text{Annealing} \\ + N_c (\Phi_{eq}) & \text{Constant} \\ + N_y (\Phi_{eq}, t, T) & \text{Anti-annealing} \end{vmatrix}$$

- Short term: "Beneficial annealing"
- Long term: "Reverse annealing"
 - time constant depends on temperature:
 - ~ 500 years (-10°C)
 - (20°C) ~ 500 days
 - \sim 21 hours (60°C)

Detectors must be cooled even when the experiment is not running! 13

What did we learn for LHC?

Operation of devices at higher bias Voltages

Bias ring design

Multi-guard ring CMS and Atlas Pixels

CMS strips: one guard ring, the metal overhang as "continuous" multi-guard-structure.

• CMS: Metal overhang design AI strips overhang implants \rightarrow high breakdown voltage since V_{break}(SiO₂) > V_{break}(Si) ATLAS strips Al strip Metal shields Field plate geometry (Hamamatsu) implant SiO₂ CMS p^+ strips strips n bulk ATLAS: field plate geometry for the Hamamatsu detectors (86%), non field

plate CiS (14%). CiS detectors show sensitivity to humidity

What did we learn for LHC

- Oxygen is good!!! (RD48 was formed at CERN to develop radiation hard sensors for the LHC.)
 - □ DOFZ silicon has less variation in V_{fd} with radiation compared to FZ
 ⇒ more radiation hard
 - Atlas and CMS barrel pixel detectors use oxygenated silicon

- Space Charge Sign Inversion (SCSI)
 - n-on-n sensors allows operation with undepleted detectors.
 - Faster charge collection
 - Option chosen for Atlas and CMS pixels

Models with constant N_{eff}

Two trap model and double peak E field

Leakage Current

Damage parameter α (slope in figure)

$$\alpha = \frac{\Delta I}{V \cdot \Phi_{eq}}$$

Leakage current per unit volume and particle fluence

- Leakage current decreasing in time (depending on temperature)
- Strong temperature dependence

$$I \propto \exp\left(-\frac{E_g}{2k_BT}\right)$$

 \Rightarrow Cool detectors during operation! Ex: *I*(-10°C) ~1/16 *I*(20°C)

 α is constant over several orders of fluence and independent of impurity concentration in Si ⇒ can be used for fluence measurement

Trapping

Deterioration of Charge Collection Efficiency (CCE) by trapping

Trapping is characterized by an effective trapping time τ_{eff} for e⁻ and h:

$$Q_{e,h}(t) = Q_{0e,h} \exp\left(-\frac{1}{\tau_{eff e,h}} \cdot t\right) \qquad \text{where} \qquad \frac{1}{\tau_{eff e,h}} \propto N_{defects} \propto fluence$$

Increase of $1/\tau$ with fluence

$1/\tau$ changes with annealing

Current LHC trackers

CMS

- Three regions to match radiation damage and occupancy
 - <mark>□n-on-n pixels</mark> (r<20 cm)
 - Φ=3.0 ×10¹⁴ cm⁻²/year,
 270 µm thick sensors Low resistivity (1.5-2 KΩ·cm) oxygenated for the barrel.
 - <mark>□p-on-n stri</mark>ps
 - Inner region (20cm <r<50cm)</p>
 - Φ=1.6 ×10¹⁴ cm⁻², 320
 μm thick, Low resistivity (1.5-2 KΩ·cm), pitch
 ~80 μm
 - ■Outer region (r>50cm)
 - Φ=3.5 ×10¹³ cm⁻², 500 μm thick, High resistivity (3.5-7.5 ΚΩ·cm), pitch ~ 200 μm

SLHC and tracking

 $H \rightarrow ZZ \rightarrow ee \mu \mu$ m(higgs)=300 GeV all tracks with $p_T < 1$ GeV removed

- Integrated Luminosity (radiation damage) dictates the detector technology
- Instantaneous rate (particle flux) dictates the detector granularity
 - more granularity if we aim at same performance we expect from the LHC trackers

R (cm)	Φ (p/cm ²⁾	Technology	S
>50	10 ¹⁴	Present p-in-n (or n-in-p) Limitation I _{leak}	~20Ke ⁻
20-50	10 ¹⁵	Present n-in-n (or n-in-p) Limitation V _{dep}	~10Ke ⁻
<20	10 ¹⁶	RD needed Limitation trapping	~5Ke⁻

Radiation hard devices for the SLHC (RD50 et al)

Silicon Defect Engineering

□ Understanding radiation damage

- Macroscopic effects and **Microscopic defects**
- Simulation of defect properties & kinetics
- Irradiation with different particles & energies
- 🗸 🗆 Oxygen rich Silicon
 - DOFZ, Cz, MCZ, EPI
 - □ Oxy. dimer & hydrogen enriched Si
 - □ Pre-irradiated Si

□ Influence of processing technology

New Materials

Silicon Carbide (SiC), Gallium Nitride (GaN)

Diamond: CERN RD42 Collaboration Amorphous silicon (TFA)

Device Engineering

- p-type silicon detectors (n-in-p)
- thin detectors
- 3D 🔀
- Semi 3D detectors **Stripixels**
- Cost effective detectors
- Simulation of highly irradiated detectors

- Monolithic devices
- Change operational conditions
 - CERN-RD39 "Cryogenic Tracking 🥁 **Detectors**"

Poly silicon

RF Heating coil

silica

crucible

Si -

melt

Single crystal

silicon

seed

Si -

crystal

heater

Float Zone

- Using a single Si crystal seed, melt the vertically oriented rod onto the seed using RF power and "pull" the monocrystalline ingot
- Can be oxygenated by diffusion at high T

Czochralski silicon

- Pull Si-crystal from a Si-melt contained in a silica crucible while rotating.
- □Silica crucible is dissolving oxygen into the melt high concentration of O in CZ
- Material used by IC industry (cheap), now available in high purity for use as particle detector (MCz)

Epitaxial silicon

□Chemical-Vapor Deposition (CVD) of Silicon
 □CZ silicon substrate used ⇒ diffusion of oxygen
 □Growth rate about 1µm/min
 □Excellent homogeneity of resistivity
 □150 µm thick layers produced (thicker is possible)
 □price depending on thickness of epi-layer but not extending ~ 3 x price of FZ wafer

Oxygen concentration in FZ, CZ and EPI

Epitaxial silicon **Cz:** high homogeneous concentration and formation of Thermal Donors EPI **CZ** substrate layer (reducing acceptors due to radiation) 5 5 5 D-concentration [cm⁻³⁻ 50 1018 10¹⁸ D-concentration [1/cm³⁻ 0^{18} 5 Cz as grown 10^{17} 10^{17} 10^{1} SIMS 25 µm SIMS 50 µm 5 SIMS 75 um simulation 25 um simulation 50 µm 1016 [G.Lindström et al., 10th Esimpulationp75umon 10^{16} 10^{16} DOFZ 48h/1150°C Semiconductor Detectors, 12-16 June 20051 DOFZ 24h/1150°C [G.Lindstroem et al.] 5 5 150 50 100200 250 20 30 50 60 80 í೧ 10 40 70 90 100depth [µm] Depth [µm]

- DOFZ: inhomogeneous oxygen distribution, increasing with time at high temperature
- EPI: inhomogeneous O concentration due to diffusion from substrate into epilayer during production

Standard FZ, DOFZ, Cz and MCz Silicon

Standard FZ silicon

- type inversion at $\sim 2 \times 10^{13} \text{ p/cm}^2$
- strong N_{eff} increase at high fluence

Oxygenated FZ (DOFZ)

- type inversion at $\sim 2 \times 10^{13} \text{ p/cm}^2$
- reduced N_{eff} increase at high ϕ

CZ silicon and MCZ silicon

- no type inversion in fluence range
- Verified for CZ and MCz silicon by TCT measurements ⇒ donor generation overcompensates acceptor generation

Common to all materials (after hadron irradiation):

reverse current increase

increase of trapping (electrons and holes) within ~ 20%

Many groups are studying MCz: INFN, Glasgow, BNL, Helsinki Institute of Physics HIP, Purdue, Liverpool, Rochester etc....

Irradiation studies

 Irradiation with 24 Gev/c protons at CERN SPS to 6.0x10¹³, 3.0x10¹⁴, 3.4x10¹⁵ n_{eq}/cm²; Irradiation with 26 MeV protons Karlsruhe in the range: 1.4x10¹³-2.0x10¹⁵ n_{eq} /cm²

26

LHC luminosity upgrade

EPI Irradiation

G.Lindström et al., 10th European Symposium on Semiconductor Detectors, 12-16 June 2005

- Epitaxial silicon grown by ITME
 - \square Layer thickness: 25, 50, 75 μm; resistivity: ~ 50 Ωcm
 - □ Oxygen: [O] \approx 9×10¹⁶cm⁻³; Oxygen dimers

- No type inversion in the full range up to ~ 10¹⁶ p/cm² and ~ 10¹⁶ n/cm² (type inversion only observed during long term annealing)
- Proposed explanation: introduction of shallow donors bigger than generation of deep acceptors

LHC luminosity upgrade

Daniela Bortoletto

EPI Annealing

- 50 μ m thick silicon detectors:
 - Epitaxial silicon (50 Ω cm on CZ substrate, ITME & CiS)
 - Thin FZ silicon (4K Ω cm, MPI Munich, wafer bonding technique)

Thin FZ silicon: Type inverted, increase of depletion voltage with time **Epitaxial silicon:** No type inversion, decrease of depletion voltage with time \Rightarrow No need for low temperature during maintenance of SLHC detectors! LHC luminosity upgrade 28 Daniela Bortoletto

EPI SLHC

- Radiation @ 4cm: Φ_{eq}(year) = 3.5 × 10¹⁵ cm⁻²
- SLHC-scenario:
 - 1 year = 100 days beam (-7°C)
 - □ 30 days maintenance (20°C)
 - 235 days no beam (-7°C or 20°C)

50 µm EPI silicon: a solution for pixels detectors at SLHC?

G.Lindström et al.,10th European Symposium on Semiconductor Detectors, 12-16 June 2005 (Damage projection: M.Moll)

- CCE measured with β from ⁹⁰Sr
 35 a shaping time
 - □25ns shaping time
 - \Box proton and neutron irradiations of 50 μm and 75 μm epi layers

□CCE (50 μm) $Φ_{eq}$ = 8x10¹⁵ n/cm⁻²,<u>2300 e</u> □CCE (75 μm) Φ= 2x10¹⁵ n/cm⁻², <u>4500 e</u> □CCE (50 μm): Φ= 1x10¹⁶p/cm⁻² <u>2400 e</u>

n-in-p microstrip detectors

- Miniature n-in-p microstrip detectors (280μm)
- Detectors read-out with LHC speed (40MHz) chip (SCT128A)
- Material: standard p-type and oxygenated (DOFZ) p-type

Charge collection in planar silicon detectors might be sufficient for all but inner-most Pixel layer!

Benefit: Single sided processing ~50% cheaper than n-in-n

Annealing of p-type sensors

Novel Materials

Property	Diamond	GaN	4H SiC	Si	∎ Wide bandgap
E _g [eV]	(5.5)	3.39	3.26	1.12	diamond=5.5
E _{breakdown} [V/cm]	10^{7}	$4 \cdot 10^{6}$	$2.2 \cdot 10^{6}$	$3 \cdot 10^{5}$	SiC=3.3eV
$\mu_{\rm e} [{\rm cm}^2/{\rm Vs}]$	1800	1000	800	1450	< leakage current
$\mu_{\rm h} [{\rm cm}^2/{\rm Vs}]$	1200	30	115	450	than silicon
v _{sat} [cm/s]	$2.2 \cdot 10^{7}$	-	$2 \cdot 10^{7}$	0.8.10	Signal:
Z	6	31/7	14/6	1.4	Diamond 36 e/μm
ε _r	5.7	9.6	9.7	···· [·] 11.9	Si 89 e/μm
e-h energy [eV]	13	8.9	(.6-8.4).	3.6	> charge than
Density [g/cm ³]	3.515	6.15	3.22	2.33	diamond
Displacem. [eV]	43	19.2±2	25		Alsplacement threshold than silicor

Diamond:

- Dielectric constant (2.1 \times lower than SI) \rightarrow low capacitance
- Higher Electron and hole mobility \rightarrow fast collection times

 \Rightarrow radiation harder than

silicon (?)

SiC: CCE after irradiation

- Material: epitaxial layers by CREE Res. Inc. and IKZ (Institut fur Kristallzüchtung, Berlin)
- Devices: Schottky diodes, Alenia Marconi Systems (Rome)
- Depletion depth: 20-40 µm
- Effective doping: 5.3× 10¹⁴ cm⁻²
- Irradiated with protons at CERN PS to 1.6 ×10¹⁶/cm² and neutrons al Ljubjana to 7 ×10¹⁵/cm²

RESMDD 04 conference, in press with NIMA

CCE before irradiation
1100 e⁻ @400 V with α particles
1400 e⁻ @200 V with MIPS (100% CCE)
CCE after irradiation
20% CCE (α) after 7x10¹⁵ n/cm²!
35% CCE (β) (~ 300 e⁻) after 1.4x10¹⁶ p/cm² much less than in silicon

Diamond

Ionization energy is high: MIP≈ 2x less signal for same X₀ (w.r.t. SI)
 □Diamond: ~13.9ke⁻ in 361 µm
 □SI: ~26.800 ke⁻ in 282 µm
 In Polycrystalline Diamond grain-boundaries, dislocations, and defects:

limits carrier lifetime, mobility and charge collection distance and position resolution Signal formation

distance=distance e-h pair move apart

 $Q=Q_0 d/t$ where d= collection

Diament DESSB Seite-grekippt 300/m

Polycrystalline Diamonds traditionally grown by CVD

Daniela Bortoletto

Polycrystalline Diamonds

- RD42 in collaboration with vendors have achieved collection distance > 300 μ m

Charge Collection in DeBeers CVD Diamond

-Wafers diameter >12 cm

- Excellent radiation hardness
 - 60% CCE at 2.9 10¹⁵ π/cm²
 - 23% improvement in resolution
 - 25% CCE at 1.8×10¹⁶ p/cm²
- Used in successfully for radiation monitoring for BaBar, Belle, CDF, CMS

Single Crystal Diamond

- Single crystal diamond has been fabricated with Element six ≈ 10 mm × 10mm, >1 mm thickness.
- Largest scCVD diamond ≈ 14 mm × 14 mm.

- Excellent mobility. For this sample:
 - μ_{0h} = 1714 cm²/Vs, μ_{0e} = 2064 cm²/Vs
 - High drift velocity \Rightarrow better lifetimes \Rightarrow charge trapping might not be an issue

High quality scCVD diamond can collect full charge

■ Width of Landau distribution is ≈ 1/2 that of silicon, ≈ 1/3 that of pCVD diamond

Diamond Atlas module

- Beam test at DESY with 4-6 GeV electrons
- Results: Noise ~ 137e, Mean Threshold 1454e, Threshold Spread ~ 25e.

- Preliminary efficiency >97.5%
 - □ still need to correct for dead or missing channels.

Device Engineering: 3D detectors

(Introduced by S.I. Parker et al., NIMA 395 (1997) 328

Combine VLSI and MEMS (Micro Electro Mechanical Systems)

Electrodes:

Narrow columns processed inside the bulk instead then implanted on surface: 3D

Diameter: 10μm; Distance: 50-100μm

Lateral depletion:

- □Lower depletion voltage
- $\Box Short collection distance \Rightarrow fast signal$
- More rad hard

3D detectors: characteristics

Low leakage currents
 Low depletion voltages
 Gaussian X ray lines
 Fast charge collection

Performance after irradiation~10¹⁵ p/cm²

Daniela Bortoletto

3D DETECTOR FABRICATION

Non Standard Processing: Wafer bonding, Deep reactive ion etching , Low pressure chemical vapor deposition, Metal deposition \Rightarrow Mass production expensive

1) ETCHING THE ELECTRODES

WAFER BONDING (mechanical stability) Si-OH + HO-Si -> Si-O-Si + H₂O

DEEP REACTIVE ION ETCHING (electrodes definition) **Bosh process** SiF_4 (gas) + C_4F_8 (teflon)

C shaped test structure ~1 μm difference between top and bottom

Daniela Bortoletto

2) FILLING THE ELECTRODES

METAL DEPOSITION Shorting electrodes of the same type with Al for strip electronics readout or deposit metal for bump-bonding

41

3D detectors

• 3D Single Type Column (3D-STC) aiming at process simplification

- -n+ columns in p-type substrate
- -Bulk contact provided by a uniform p+ contact on backside
- -Holes not etched through the wafer
- -No hole filling (holes are doped but not filled with polysilicon)
- -CNM: Hole etching (DRIE); IRST: other processing (contacts or polysilicon deposition etc.)

Hole depth: 120µm

IRST-Trento and CNM Barcelona

Uniform p⁺ layer

Claudio Piemonte (*ITC-irst*)

Other new structures: Stripixel

- Several concepts for new (planar and mixed planar & 3D) detector structures aiming for improved radiation tolerance or less costly detectors (see e.g. Li - 6th RD50 workshop, or Bortoletto- 5th RD50 Workshop)
- Example: Stripixel concept or semi 3D:

Z. Li, D. Lissauer, D. Lynn, P. O'Connor, V. Radeka

Monolithic Active Pixel Sensors (MAPS)

Hybrid Pixel sensors have achieved a level of maturity in HEP. Future problems are cost, mass, and cooling of detectors under high radiation.

- Much work is being done on MAPS to reduce mass (ILC)
- A MAPS is a silicon structure where the detector and the primary readout electronics are processed on the same substrate.
 - •Only the top few microns of an IC contain active circuitry.
 - •The rest is merely a support structure.

MAPS with Standard CMOS processes

Advantages

- signal processing integrated on sensor substrate
- Sensors may be thinned down to <20 μm</p>
- Standard processing ⇒ chip and fast turn around

- Many groups studying this concept: RAL, IReS, Hawaii, INFN SLIM etc.
- Principle of operation:
 - □ Signal charge created in the epitaxial layer Q=80e-h/µm
 - □ The charge is ≈1000 e- and it can be measured because of the small capacitance of the electrode
 - □ Used in CMOS cameras
- Challenges:
 - Transistors options are limited
 - Newer processes have thinner or no-epi ⇒ vary small signals
 - Sparsification difficult to implement
 - Limited readout speed
 - Triple well processes in 0.13 μm are promising

Thin Film on Asic (TFA)

Development centered at CERN, Pierre Jarron's talk at Vertex 04

- TFA is an emerging pixel sensor technology
- Deposition of a-Si:H layer above readout ASICs

Amorphous structure

- □Dangling bonds compensated by H
- H compensates impurities or radiationinduced defects
- □Short time annealing
- Band tail formation due to bonding disorder

A:Si-H properties and rad hardness

a-Si:H film ultra rad hard:

•No l_{leak} increase after a fluence of 1.8 ×10¹⁶p/cm².

Slight degradation of CCE and Photo-Conductivity after 3.5 ×10¹⁵p/cm²

CCE. It can be recovered after 1 hour annealing at 150°C

Advantages/Technical challenges

- CCE Not yet understood:
 - e-h creation energy 3.6-5 eV
- Develop thicker film
- Low noise readout to handle small signal
- Non-commercial process, Deposition with plasma reactor at IMT, Neuchatel

30 μ m thick sample Planarity \Rightarrow edge effects

Ultra-rad hard sensors

- Low cost pixel detector technology
 - Film deposition cost estimated ≈ 30% of deep sub-micron wafer.
 - •For 8", about \$2000 + \$600 for 100cm² (yield 75%)

Extra slide Change of operation conditions

- Device Recovery/Improvement Via Elevated temperature annealing (DRIVE)
- Thermal annealing of radiation damage in FZ or DOFZ:
 - □If T>450 °C will destroy the detector and/or electronics
 - If T< 450 °C, reverse annealing (generation of more negative space charges) makes detectors worse

- For high resistivity MC_z Si thermal annealing with T= 200 °C 450 °C will generate thermal donor (TD, positive space charge) due to high oxygen concentration [O]
- IDEA: Adjust annealing T and time, and [O] so that TD creation rate cancels compensates the original negative space charges due to irradiation⇒ manageable V_{dep} LHC luminosity upgrade Daniela Bortoletto

Extra slide

DRIVE first results

Z. Lee BNL

- Detectors:
 - $\Box p^+$ -n-n⁺pad structures with multi-GRs n-type MCz Si ρ =1 kOhm · cm,
 - $\Box p^+$ -p-n⁺ pad structures with multi-GRs p-type MCZ Si ρ =3 kOhm · cm
- Irradiation 24 Gev and 20 GeV protons
 Measurements:

□After each annealing step (at BNL):

- I-V and C-V dependences
- acurrent pulse response using TCT with a laser pulse generation of nonequilibrium carriers

□After final annealing (at loffe Inst.):

- Spectra of deep levels (C-DLTS)
- •Interesting results. For ex. :
 - I_{leak} decreases after 1st anneal, but increases at high biases
 - After t_{ann}= 305 min: I_{leak} becomes saturated
 - After final anneal, I_{leak} decreased by more than 2 orders of magnitude

Sub-micron technology

- LHC pixel development:
 - □ 5K channels per cm²
 ⇒unprecedented level of integration
 - 40 MHz operation at power density below 0.5W/cm²
 - radiation hardness of 50MRad, and high SEU-tolerance.

- Technology was initially unavailable. Adequate performance achieved in radsoft 0.8µ CMOS, but transfer to rad-hard failed to meet requirements.
- The arrival of 0.25µm CMOS with radtolerant layout rules was key to development of the current ROCS.
- Working with mainstream commercial vendor (IBM) ⇒ average yield of ~80%.

Atlas Chip

Sub-micron technology

Both ATLAS and CMS are investigating IBM 0.13µ CMOS8RF electronics:

- □First measurements show that 0.13µm CMOS appears to be more radiation hard than 0.25µm CMOS.
- □VT shifts at about 70MRad are reduced by factors of 5 or more (X-ray studies).
- □Cost of runs is high: 0.25µm engineering run is ≈150K\$, 0.13µm is ≈600K\$

CMS/ATLAS common chip development??

Standard

- Can we fully use gain of 0.13 µm? Can we waive some of the special design rules ?
- In 0.25 µm DSM size penalty due to Enclosed Layout Transistor (ELT). Size penalty, reduces sensitivity to SEU.
- ATLAS Designed test chip in IBM 0.13µ CMOS technology to addresses performance of SEU-tolerant storage schemes.

ITRS Roadmap Acceleration Continues...Half Pitch

ELT LHC luminosity upgrade

Daniela Bortoletto

Other major issues

- Uncertainty in the crossing frequency: (25ns, 15 ns, 10 ns, and 12.5ns) \Rightarrow Critical for ROC
 - **CMOS logic power is** \propto to CV²f
 - The power supply voltage decreases from 2.5 to 1.5 V going from 0.25 μm to 0.13 μm ⇒power reduction of 2.77 at fixed f
 - The gate capacitance/unit area goes up, the gate area goes down ⇒ decrease in C ≈1.73 for a given complexity
 - The frequency might increase limiting the power savings.
 - □Power in analog section is
 - $\propto I_{\rm rms} \times V$
 - Decrease in V reduces the power by 1.66 at constant I
 - The current in the analog section may actually be increased to compensate for lower dynamic range limiting power saving

- The requirement of more granularity ⇒ increase in channel counts ⇒ cooling ⇒ more mass
- Serial powering of high density detectors can offer: reduced number of power cables, reduce mass, reduced power dissipation

- Large systems are hard to build
 Qualification must be taken seriously
 - Many complex system issues

Detector specific developments

CMS and Atlas are starting look at detector configurations:

Summary

- At fluences up to 10¹⁵cm⁻² (Outer layers of a SLHC detector) the change of depletion voltage and the large area is the major problem:
 - CZ silicon detectors could be a cost-effective radiation hard solution (no type inversion, use p-in-n technology)
 - □p-type silicon microstrip detectors show very encouraging results: CCE ≈ 6500 e; $\Phi_{eq}^{=} 4 \times 10^{15}$ cm⁻², 300µm, collection of electrons no reverse annealing observed in CCE measurement!
- At the fluence of 10¹⁶cm⁻² (Innermost layer of a SLHC detector) the active thickness is significantly reduced due to trapping. Options are:
 - **Thin/EPI detectors**
 - □3D detectors, TFA
 - Diamond

Radiation hard electronics for low signals

- Performance of 0.13 DSM electronics is promising
- Integration issue (power, cooling and mass) are complex. LHC experience will be very useful to avoid mistakes

References

- 1. Michael Moll: "Tracking with solid state detectors", Academic Training 2005-2005
- 2. Michael Moll' thesis: http://mmoll.web.cern.ch/mmoll/thesis/ (radiation damage)
- 3. RD50 http://rd50.web.cern.ch/rd50/
- 4. RD42 http://rd42.web.cern.ch/RD42/
- 5. Rd39 http://rd39.web.cern.ch/RD39/
- D. B. Ta, et. al., University of Bonn, Serial Powering Concept, Realization and Characterization of serially Powered Pixel Modules, 11th, Workshop on Electronics for LHC, Heidelberg, September 2005.
- 7. Marc Weber, et. al., RAL, *Serial Powering for Silicon Strip Detectors at SLHC*, 11th Workshop on Electronics for LHC, Heidelberg, September 2005.
- Jean-Pierre Joly, LETI-CEA, New Wafer to Wafer and chip to Wafer Device Stacking Technology Implementations, 3D Architectures for Semiconductor integration and Packaging, Tempe, Arizona, June 2005.
- 9. F. Faccio, et. al., CERN, *Radiation-induced Edge Effects in Deep Submicon CMOS Transistors*, to be published December 2005.
- 10. E. N. Spencer, SCIPP-UCSC, *Evaluation of SiGe BiCMOS Technologies for Next Generation Strip Readout*, 11th Workshop on Electronics for LHC, Heidelberg, September 2005.
- 11. P. Jarron, et. al., CERN, *TFA Pixel Sensor Technology for Vertex Detectors*, Vertex 2004, Como, Italy October, 2004
- 12. W. Kucewicz, AGH Univ of Science and Technology, *Fully Depleted Monolithic Active Pixel Detector in SOI Technology*, Bonn, February 3, 2005.
- 13. N. Wermes, Bonn University, *Pixel Detectors*, 11th Workshop on Electronics for LHC, Heidelberg, September 2005.
- 14. Ray Yarema, Fermilab, *Challenges in front end electronics for future HEP*, Vertex05, Nikko, Japan, November 2005