Physics at the Tevatron

Lecture IV

Beate Heinemann University of Liverpool

CERN, May 15-19th 2006

1

Outline

- Lecture I
 - The Tevatron, CDF and DØ
 - Production Cross Section Measurements
 - Lepton identification
- Lecture II
 - The Top Quark and the Higgs Boson
 - jet energy scale and b-tagging
- Lecture III
 - B_s mixing and $B_s \rightarrow \mu\mu$ rare decay
 - Vertex resolution and particle identification
- Lecture IV
 - Supersymmetry and High Mass Dileptons
 - Missing E_T and tau-leptons

Does the Standard Model work?

pro's:

- Is consistent with electroweak precision data con's:
- Accounts for only 4% of energy in Universe
- Lacks explanation of mass hierarchy in fermion sector
- does not allow grand unification of forces
- Requires fine-tuning (large radiative corrections in Higgs sector)
- Where did all the antimatter go?
- Why do fermions make up matter and bosons carry forces?

The Unknown beyond the Standard Model

- Many good reasons to believe there is as yet unknown physics beyond the SM:
 - Dark matter + energy, matter/anti-matter asymmetry, neutrino masses/mixing +many more (see later)
- Many possible new particles/theories:
 - Supersymmetry:
 - Many flavours
 - Extra dimensions (G)
 - New gauge groups (Z', W',...)
 - New fermions (e*, t', b', …)
 - Leptoquarks
- Can show up!
 - As subtle deviations in precision measurements
 - In direct searches for new particles

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squarks, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

What's Nice about SUSY?

- Introduces symmetry between bosons and fermions
- Unifications of forces possible
 - SUSY changes runnning of couplings
- Dark matter candidate exists:
 - The lightest neutral gaugino
 - Consistent with cosmology data
- No fine-tuning required
 - Radiative corrections to Higgs acquire SUSY corrections
 - Cancellation of fermion and sfermion loops
- Also consistent with precision measurements of M_W and M_{top}
 - But may change relationship between M_W , M_{top} and M_H

From C. Quigg

SUSY Comes in Many Flavors

- Breaking mechanism determines phenomenology and search strategy at colliders
 - GMSB:
 - Gravitino is the LSP
 - Photon final states likely
 - mSUGRA
 - Neutralino is the LSP
 - Many different final states
 - Common scalar and gaugino masses
 - AMSB
 - Split-SUSY: sfermions very heavy
- R-parity
 - Conserved: Sparticles produced in pairs
 - natural dark matter candidate
 - Not conserved: Sparticles can be produced singly
 - constrained by proton decay if violation in quark sector
 - Could explain neutrino oscillations if violation in lepton sector

Mass Unification in mSUGRA

- Common masses at GUT scale: m₀ and m_{1/2}
 - Evolved via renormalization group equations to lower scales
 - Weakly coupling particles (sleptons, charginos, neutralions) are lightest

A Typical Sparticle Mass Spectrum

Sparticle Cross Sections

SUSY compared to Background

- Cross sections rather low
 - Else would have seen it already!
- Need to suppress background efficiently

Strategy for SUSY Searches

- MSSM has more than 100 parameters
 - Impossible to scan full parameter space
 - Many constraints already from
 - Precision electroweak data
 - Lepton flavour violation
 - Baryon number violation
 - ...
- Makes no sense to choose random set
 - Use simplified well motivated "benchmark" models
 - Ease comparison between experiments
- Try to make interpretation model independent
 - E.g. not as function of GUT scale SUSY particle masses but versus EWK SUSY particle masses
 - Limits can be useful for other models
 - Working model is mSUGRA

Generic Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and \mathbf{Z}_{+}

- Strong interaction => large production cross section
 - for M(\tilde{g}) ≈ 300 GeV/c²:
 - 1000 event produced
 - for M(\tilde{g}) ≈ 500 GeV/c²:
 - 1 event produced

Signature depends on \widetilde{q} and \widetilde{g} Masses

Optimize for different signatures in different scenarios

Selection and Procedure

- Selection:
 - Large missing E_T
 - Due to neutralinos
 - Large H_T
 - $H_T = \sum E_T^{jet}$
 - Large $\Delta \phi$
 - Between missing E_T and jets and between jets
 - Suppress QCD dijet background due to jet mismeasurements
 - Veto leptons:
 - Reject W/Z+jets, top

- Procedure:
 - Define signal cuts based on background and signal MC studies
 - 2. Select control regions that are sensitive to individual backgrounds
 - Keep data "blind" in signal region until data in control regions are understood
 - 4. Open the blind box!

Missing Energy

- Data spectrum contaminated by
 - Noise
 - Cosmic muons showering
 - Beam halo muons showering
- Needs cleaning up!
 - track matched to jet
 - electromagnetic energy fraction
 - Removal of hot cells
 - Topological cuts against beam-halo

Beam-Halo Muon Background

- Muon that comes from beam and goes through shielding
- Can cause showers in calorimeters
 - Shower usually looks not very much like physics jet
 - Often spike at certain azimuthal angles: $\boldsymbol{\pi}$
 - But there is lots of those muons!
 - Can cause problem for trigger rate

QCD Dijet Rejection Cut

E_τ [GeV]

Backgrounds and Control Regions

- Background sources:
 - W/Z+jets, top
 - QCD multijet
- Control regions:
 - QCD multijet:
 - Make all selection cuts but invert deltaphi cut
 - CDF simulates jet background
 - DØ determines it from data
 - W/Z+jets, top
 - Make all selection cuts but invert lepton veto

The Data in Different Topologies

A Nice Candidate Event!

Squark Candidate: E_T =381 GeV

Cross Section Limits

- No excess in data
 - Evaluate upper limit on cross section
 - Find out where it crosses with theory
- Theory has large uncertainty: ~30%
 - Crossing point with theory lower bound represents limit on squark/gluino mass

Squark and Gluino Mass Limits

- No evidence for excess of events:
 - DØ excluded gluinos up to 241
 GeV independent of squark mass:
 - Mostly due to 4-jet analysis
 - CDF reaches 400 GeV exclusion for m(q̃)≈m(g̃)
 - Statistical downward fluctuation
 - Optimised for this region
- Stop and sbottom quarks are excluded/negligible in analyses:
 - They introduce model dependence and are better looked for differently

High Mass Resonances

Resonances or Tails

- New resonant structure:
 - New gauge boson:
 - Z' →ee, μμ, ττ, tt
 - W' $\rightarrow e_{\nu}$, μ_{ν} , τ_{ν} , tb
 - Randall-Sundrum Graviton:
 - G \rightarrow ee, $\mu\mu$, $\tau\tau$, $\gamma\gamma$, WW, ZZ,...
- Tail:
 - Large extra dimensions (ADD model)
 - Many many many resonances close to each other:
 - "Kaluza-Klein-Tower": ee, μμ, ττ, γγ, WW, ZZ,...
 - Contact interaction
 - Effective 4-point vertex
 - E.g. via t-channel exchange of very heavy particle
 - Like Fermi's β -decay

Dilepton Selection

- Two high momentum leptons
 - irreducible background is Drell-Yan production
 - Other backgrounds:
 - Jets faking leptons: reject by making optimal lepton ID cuts
 - WW, diphoton, etc. very small
- Have searches for
 - Dielectrons
 - Dimuons
 - Ditaus
 - Electron+muon
 - flavor changing

Dilepton Acceptance x Efficiency

 Acceptance typically 20-40% for ee, μμ and eμ analyses

Neutral Spin-1 Bosons: Z'

- 2 high P_T leptons: ee, $\mu\mu$ or $e\mu$
- Data look like they agree well with background
 - Let's evaluate this more closely!

How consistent are the data with the SM?

- Calculate probability of data vs SM prediction at each mass:
 - Mass window size adapted to mass resolution (~3%)
- At 330 GeV the probability is only 0.2%!
 - Have we observed a Z'?

Have we observed a Z'?

- Need to take into account the "trial factor"
 - We are looking in many mass bins
- Right question:
 - How often do we see a signal as large as 0.2% anywhere in the mass spectrum?
- Answer:
 - Often: 19% of all experiments
 - Evaluated using pseudoexperiments
- But, surely we should keep an open eye with more data!!

For 3 σ evidence we would need 0.002% at one mass value!

Interpreting the Mass plots

- No evidence for any deviation from Standard Model => Set limits on new physics
 - Set limits on cross section x branching ratio
 - This is model independent, i.e. really what we measure
 - Any theorist can overlay their favourite curve
 - It remains valid independent of changes in theory
 - Always publish this!
 - can also set limits on Z' mass within certain models
 - This is model dependent
 - Nice though for comparing experiments, e.g. LEP vs Tevatron

Observed limit is as expected within 1σ

Neutral Spin-1 Bosons: SM-like Z'

 95% C.L. Limits for Z' boson with SM couplings
 95% CL Limits (Spin-1)

	ee	μμ
CDF	>850 GeV	>735 GeV
D0	>780 GeV	>680 GeV

Z´→ee Search: 2-dimensional

- Use now dielectron mass spectrum and angular distribution:
 - 2D analysis improves sensitivity
- Data agree well with Standard Model spectrum
 - No evidence for mass peak or different angular spectrum

Z'→ee Signal Examples

Angular distribution has different sensitivity for different Z' models

Limits on New Physics

• Mass peak search:

Model	Z _{SM}	Z _χ	Z_ψ	Z_η	ZI	Z _N	Z_{sec}
Mass limit (GeV/c²)	860	735	725	745	650	710	675

• Tail enhancement: contact interaction

Contact interactions qqee $\sum_{q} \sum_{i,j=L,R} \frac{4\pi\eta}{\Lambda_{ij}^2} \bar{e}_i \gamma^{\mu} e_i \bar{q}_j \gamma_{\mu} q_j$

CDF RunII Preliminary (448 pb⁻¹)

Interaction	LL	LR	RL	$\mathbf{R}\mathbf{R}$	VV	AA
Λ_{qe}^+ limit (TeV/ c^2)	3.7	4.7	4.5	3.9	5.6	7.8
Λ_{qe}^{-} limit (TeV/ c^2)	5.9	5.5	5.8	5.6	8.7	7.8

VV=LL+LR+RL+RR; AA = LL+RR-RL-LR

Heavy Object could couple mostly to $\boldsymbol{\tau}\xspace's$

- Maybe the third generation is special?
 - E.g. Higgs bosons couple to mass!
 - Search for Z' or Higgs boson decaying to two $\tau \hat{}s$
- Selection:
 - one electron or muon (" τ_e, τ_{μ} ")
 - From leptonic tau-decay
 - one hadronic tau (" τ_h ")
 - From hadronic tau-decay
 - Both should be isolated
- Hadronic Tau ID:
 - Select 1- and 3-prong decays
 - Efficiency: ~20-50%
 - Jet fake rate: ~1-0.1%
 - 100-10 times higher than for electrons or muons!

100

E^{jet} [GeV]

50

150

200

Tau Signals!

Acceptance for di-tau events

Typical acceptance 1-4%

- Factor 10 lower than for electrons and muons

Di-tau Mass reconstruction

- Neutrinos from tau-decay escape:
 - No full mass reconstruction possible
- Use "visible mass":
 - Form mass like quantity: $m_{vis}=m(\tau,e/\mu,E_T)$
 - Good separation between signal and background
- Full mass reconstruction possible in boosted system, i.e. if p_T(τ, τ)>20 GeV:
 - Loose 90% of data statistics though!
 - Best is to use both methods in the future

Neutral Spin-1 Bosons: Z'

- Excitement with "blind" data analysis:
 - Count events with m_{vis} >120 GeV

	$\tau_e \tau_h$	$ au_{\mu} au_{h}$	$\tau_{h}\tau_{h}$	total
expected	1.01	1.18	0.64	2.93
observed				

Final Mass Spectra

Limit on Z' $\rightarrow \tau \tau$

Higgs in the MSSM

- Minimal Supersymmetric Standard Model:
 - 2 Higgs-Fields: Parameter $tan\beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs bosons: h, H, A, H[±]
- Neutral Higgs Boson:
 - Pseudoscalar A
 - Scalar H, h
 - Lightest Higgs (h) very similar to SM

 $\sigma \times BR_{SUSY} = 2 \times \sigma_{SM} \times \frac{\tan \beta^2}{(1 + \Delta_b)^2} \times \frac{9}{[9 + (1 + \Delta_b)^2]}$

MSSM Higgs: Results

• $pp \rightarrow A+X \rightarrow \tau\tau+X$

- Sensitivity at high $tan\beta$
- Exploiting regime beyond LEP
- Future (L=8 fb⁻¹):
 - Probe values down to 25-30!

- Complementary search for Higgs bosons decaying to bquarks ongoing
 - Combined with ττ search in DØ analysis

Conclusions: Lecture IV

- Searches for Physics Beyond the Standard Model are extremely important
 - This can revolutionize our subject and solve many (or at least a few) questions
- I showed you:
 - Squarks and Gluinos:
 - Best to optimize for physical mass regions at electroweak scale
 - High mass resonances: Z' and MSSM Higgs
- Most analyses done blindly
 - Avoid experimental bias
 - You get to have an exciting day!
 - Blind analysis does not mean "not looking at the data"
 - Look at data in background dominated regions
- Not found any new physics (yet)

Overall Conclusions

- The Tevatron physics programme is very rich:
 - Probing the electroweak, the strong, the flavour sector of the Standard Model and looking for the unknown
 - Possible due to excellent detector and trigger capabilities
- The Tevatron is operating at the highest energies
 - And it is operating very well now: 1.5 fb⁻¹ delivered
 - A hadron collider environment is challenging but doable!
- There is a lot I could not show you, see also
 - <u>http://www.cdf-fnal.gov/physics/physics.html</u>
 - <u>http://www-d0.fnal.gov/Run2Physics/WWW/results.html</u>

I hope you enjoyed the lecture, and we'll see New Physics soon!

GMSB: γγ+Ε_t

 $\tilde{\chi}$

 W^{+}

q

Ζ,

 $\tilde{\mathbf{G}}$

- Assume $\widetilde{\chi}^{0}_{1}$ is NLSP:
 - Decay to G+γ
 - Ĝ light: m ≈ 1 keV
 - - SM exp.: 10⁻⁶
- D0 inclusive search with ∫Ldt=780 pb⁻¹:
 - 2 photons: $E_t > 25 \text{ GeV}$
 - $-\not E_t > 45 \text{ GeV}$

	Exp.	Obs.	m(χ̃⁺ ₁)
DØ	2.1±0.7	4	>220 GeV

CDF result: $m(\chi^+_1)$ >168 GeV with 200 pb⁻¹

High Mass Dileptons and Diphotons

Standard Model high mass production:

New physics at high mass:

- Resonance signature:
 - Spin-1: Z'
 - Spin-2: Randall-Sundrum
 (RS) Graviton
 - Spin-0: Higgs

- Tail enhancement:
 - Large Extra Dimensions:
 Arkani-Hamed, Dimopoulos,
 Dvali (ADD)
 - Contact interaction

Extra Dimensions

- Attempt to solve hierarchy problem by introducing extra dimensions at TeV scale
 KK
- ADD-model:
 - n ED's large: 100 μ m-1fm
 - $M_{PL}^2 \sim R^n M_S^{n+2}(n=2-7)$
 - − Kaluza-Klein-tower of Gravitons \Rightarrow continuum
 - Interfere with SM diagrams: $\lambda = \pm 1$ (Hewett)
- Randall Sundrum:
 - Gravity propagates in single curved ED
 - ED small 1/M_{Pl}=10⁻³⁵ m
 - Large spacing between KK-excitations
 ⇒ resolve resonances
- Signatures at Tevatron:
 - Virtual exchange:
 - 2 leptons, photons, W's, Z's, etc.
 - BR(G->γγ)=2xBR(G->II)

Randall-Sundrum Graviton

- Analysis:
 - D0: combined ee and $\gamma\gamma$
 - CDF: separate ee, $\mu\mu$ and $\gamma\gamma$
- Data consistent with background
- Relevant parameters:
 - Coupling: k/M_{Pl}
 - Mass of 1st KK-mode
- World's best limit:
 - M>785 GeV for k/M_{Pl}=0.1

50

Large Extra Dimensions: ADD

- D0:
 - 2D analysis: Mass vs $cos(\theta^*)$
 - spin-2 particle expected at high mass and low cos(θ*)
- Nice competition between
 Tevatron, LEP and HERA!
- Lower limit on M_S (Hewett):

	D0		CDF	LEP	H1	ZEUS
	ee+γγ	μμ	ee	ee	eq	eq
λ=+1	1.28	0.97	0.96	1.20	0.82	0.78
λ=-1	1.16	0.95	0.99	1.09	0.78	0.79

D0: most stringent direct lower limit on M_s>1.28 TeV

3rd generation Squarks

• 3rd generation is special: mass could be much lower

Sbottom Quarks

000

- Selection:
 - Two jets, one b-tagged:
 - E_{T1}>40-70 GeV
 - E_{T2}>15-40 GeV
 - Missing E_T >60-100 GeV
 - Optimisation of cuts for different mass regions
- Result:
 - Data agree well with background
 - Exclude sbottom masses up to 200 GeV
 - Depending on neutralino mass

Light Stop-Quark: Motivation

- If stop quark is light:
 decay via t→blv or t→cχ1⁰
- E.g.consistent with baryogenesis:
 - Balazs, Carena, Wagner: hep-ph/0403224
 - m(t)-m(χ₁⁰)≈15-30 GeV/c²
 - m(t)<165 GeV/c²

Stop

000000

- Selection by DØ
 - 2 leptons: eμ, μμ
 - Missing E_T >15 GeV
 - Topological cuts to suppress background
 - Optimized depending on mass difference of stop and sneutrino
- Results

Cut	SM Bg.	Obs.
Α	23.0+-3.1	21
В	34.6+-4.0	34
С	40.7+-4.4	42

Exclude stop masses up to m_{top}

R-parity violation

$$W_{R_p} = \frac{\lambda_{ijk} L_i L_j \bar{E}_k}{\lambda_{ijk} L_i Q_j \bar{D}_k} + \frac{\lambda_{ijk}' L_i Q_j \bar{D}_k}{\lambda_{ijk} L_i \bar{D}_j \bar{D}_k}$$

 Search for R-parity violating decay of LSP to leptons:

 $\lambda_{121}, \lambda_{122}$

- No bounds from proton decay
- Enables neutrino oscillations
- Specifically:
 - Decay of lightest neutralino into leptons
 - Can happen in any SUSY process

- Coupling weak:
 - Lifetime large: $\tau > 0$
- Coupling very weak:
 - Lifetime large: τ»0 => decay products not observed in detectors

Charginos and Neutralinos

- Charginos and Neutralinos:
 - SUSY partners of W, Z, photon, Higgs
 - Mixed states of those
- Signature:

 - "Golden" signature at Tevatron
- Recent analyses of EWK precision data:
 - J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein:
 - hep-ph/0411216
 - Light SUSY preferred

mSugra Existing Limits : LEP

Like-Sign Dileptons

- Sensitive to both charginoneutralino and squark-gluino production
- Ask for 2 high-pt (20,10) isolated leptons of the same charge
- Main background : conversions!

how to reduce them

- DRELL YAN PRODUCTION + additional lepton
- > Leptons have mainly high p_T
- Small MET
- Low jet activity

- HEAVY FLAVOUR PRODUCTION
- Leptons mainly have low p_T
- Leptons are not isolated
- MET due to neutrinos

DIBOSON (WZ,ZZ) PRODUCTION

p

- > Leptons have high $p_{T_{\bullet}}$
- Leptons are isolated and separated
- MET due to neutrinos

irreducible background

p

Selection criteria: (I) Mass

Rejection of J/Ψ , Y and Z

Understanding of the Data: The Control Regions

Control regions defined as a function of M(II) and MET:

Each CONTROL REGION is investigated:
✓ with different jet multiplicity check NLO processes
✓ with 2 leptons requirement gain in statistics
✓ with 3 leptons requirement signal like topology

Control Regions for Trilepton Analyses

Testing Control Regions with two leptons

LS-Dileptons Control Regions

Results ! Look at the "SIGNAL" region N events/5 GeV/c² ■WZ Total Lumin Example Obs-CDF Run II preliminary, L=312 pb⁻¹ SUSY ZZ predicted Analysis osity erved DY+gamma (pb⁻¹) background Signal data Fakes 10⁻¹ 6.80±1.00 3.18±0.33 9 $e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$ 710 -SUSY • DATA μµ +e/μ 0.13±0.03 0.17±0.04 0 310 (low-p_T) 10⁻² 0.48±0.07 0.90 ± 0.09 610 1 ee+track 0.49±0.06 0.17±0.05 $ee + e/\mu$ 0 350 0.64±0.18 1.61±0.22 μµ +e/μ 750 1 1.01 ± 0.07 0.78±0.15 0 μ**e** +e/μ 750 20 40 60 80 100 120 140 0 Dimuon mass (GeV/c^2) [SIG_A, trileptons] Search for $\chi_2^0 \chi_1^{\pm} \rightarrow ee+I+X$ **CDF** Run II Preliminary Search for $\chi_1^{\pm}\chi_2^0 \rightarrow \mu e + \mu/e$ M₀=100, M_{1/2}=180, tanβ=5, μ>0, A₀=0 Events/(8.0 GeV) N events / 10 GeV $M(\chi_1^{\pm}) = 113 \text{ GeV/c}^2, M(\chi_1^0) = 66 \text{ GeV/c}^2$ CDF Run II Preliminary 680 pb L dt = 346 pb⁻¹ -- Data mSugra point Drell-Yan+γ 1 Drell-Yan W(Z/γ*),ZZ tī tt WW,WZ/ γ^* ,Z/ γ^* Z/ γ^* Drell-Yan+jets Fake Leptons - mSugra: $\chi_1^{\pm}\chi_2^0$ Data 10⁻¹ 10⁻¹ 10⁻² 10⁻² 10⁻³

100

Missing E_T (GeV)

120

10

0

20

30

40

50

Missing transverse E_T of trilepton events (GeV)

60

70

80

90

10⁻³

Ō

20

40

60

80

66

Charginos and Neutralinos

- Charginos and Neutralionos:
 - SUSY partners of W, Z, photon, Higgs
 - Mixed states of those
- Production diagrams interfere destructively
- Decays to leptons
 - depend on masses of sleptons
 - lepton flavor depends on $tan\beta$
- "Golden" signature:
 - 3 leptons + E_{+}
 - Low backgrounds

New analyses: 3 leptons $+ \not \! E_T$

- Many analyses to maximise acceptance:
 - 3 leptons
 - 2 leptons+track
 - 2 leptons with same charge
- Other requirements:
 - Dilepton mass >15 GeV and not within Z mass range
 - For same flavor opposite charge leptons
 - Less than 2 jets
 - Significant $\mathbf{\not E}_{T}$

Trileptons: Result

70

Limits on the Chargino Mass

- Scenario: slepton masses 100-120 GeV => BR to leptons high
- Slepton masses high => No sensitivity yet

- Slepton mixing (stau dominates):
 - Acceptance worse, no constraint yet
- No slepton mixing:
 - M()>127 GeV (CDF)
 - M()>117 GeV (DØ)

Probe values beyond LEP but very model dependent