Radiation response of *RADMON* sensors

T. Wijnands (TS/LEA), C. Pignard (TS/LEA)

NMRC Radfets 100 – 400 – 1000 nm Toshiba TC554001AF-70 SRAM SIEMENS BPW34FS – PIN diode

Acknowledgements :

UCL Louvain-La-Neuve, PSI Villingen, TSL Uppsala, CIS-BIO (CEA Saclay), PROSPERO (CEA-Valduc), A. Jaksic (Tyndall/NMRC)

5th LHC Radiation Day

Radiation Sensors

- **RADFET**
 - Measure trapped charge in gate oxide
 - At constant current : ∆V proportional to Total lonising Dose

- Measure radiation induced voltage spikes over a reversed biased p-n junction
- Number of "0-1 or 1-0" in SRAM proportional to the hadron fluence (E> 20 MeV)

• P-I-N Diode

- Measure conductivity variation at high forward injection
- At constant current : ∆V proportional to 1 MeV eq. neutron fluence

NMRC 300/50 400 nm

TOSHIBA TC554001AF-70L

NMRC Radfets - Electrical properties at 0 Gy

Manufacturer	NMRC	NMRC	NMRC
Oxide	1000 nm	400 nm	100 nm
Туре	300/50 W/L	300/50 W/L	300/50 W/L
Readout Current	8.7 μΑ	8.7 μΑ	8.7 μΑ
Threshold voltage	5.43 V	1.57 V	2.72 V
Temp Coefficient	-1.6 mV/ºC	-0.9 mV/ºC	-0.7 mV/ºC
Co-60 sensitivity	215 mV/Gy	65 mV/Gy	2.4 mV/Gy

Die size 1 mm x 1 mm

250 mm Kovar lid (Ni, Co, Fe)

NMRC Radfets - Readout design

RADMON design choice : TID tolerance = 200 Gy

 \Rightarrow CMOS analog switching at maximum V_{dd} = 10 V \Rightarrow 12 bit ADC at 10 V (2.44 mV/bit)

 \Rightarrow Maximum ΔV under irradiation :

- 100 nm : $\Delta V = 10 V 2.72 V = 7.28 V$ (3 kGy)
- 400 nm : ΔV = 10 V − 1.57 V = 8.43 V (130 Gy)
- 1 μ m : $\Delta V = 10 V 5.43 V = 4.57 V (21 Gy)$
- \Rightarrow Resolution :
 - 100 nm : 1 bit = 100 rad
 - 400 nm : 1 bit = 3.8 rad
 - 1 μ m : 1 bit = 1.1 rad

NMRC Radfets - Thermo compensation

Oxide Thickness	1000 nm	400 nm	100 nm
Temp Coeff 0Gy	-1.6 mV/ºC	-0.9 mV/ºC	-0.7 mV/ºC
Temp Coeff 200 Gy	< -10 mV/ºC	-4 mV/ºC	-1.14 mV/ºC
Co-60 sensitivity	215 mV/Gy	65 mV/Gy	2.4 mV/Gy

RADMON - Thermo compensation in practice

NMRC RADFET 1000 nm (non irradiated device)

5th LHC Radiation Day

NMRC Radfets - Voltage Rise time at 0 Gy

- NMRC Radfet 1000 nm
- Readout current 8.7 μA
- Short circuit : CMOS analog switch (TC4S66F Toshiba)

NMRC Radfets - Voltage Rise time at 50 Gy

- NMRC Radfet 1000 nm
- Readout current 8.7 μA
- Short circuit : CMOS analog switch (TC4S66F Toshiba)

NMRC Radfets : energy response for photons

- Co-60 <E> = 1.25 MeV
- Dose rate 50 Gy/hr
- ZTC readout

• NMRC Radfet 400 nm

Courtesey A. Jaksic (Tyndall)

NMRC Radfets : energy response for protons (1)

Proton flux : 7 10⁷ cm⁻²
Thermo compensated (ZTC) readout

• Normalisation : 60 MeV protons

NMRC Radfets : energy response for protons (2)

SEU counter – SRAM cell layout

Toshiba TC554001AF-70L

- 0.4 μm technology
- 3-5 V operation
- 4 Mbit (524288 words x 8 bits)
- grid arrangement 8192 x 512
- min cycle time 70 ns

SEU counter - 6 T SRAM cell 0.4 μm

Toshiba TC554001AF-70L

- Asymmetric SRAM cell
- $V_{dd} = 3 \text{ or } 5 \text{ V} \text{ operation}$
- 3 TFTs, 3 bulk transistors
- Read at 3 V if :
 - $\frac{\beta(Q3)}{\beta(Q1)} > 3.0$
- Write at 3 V if : β(Q4)/β(Q2) < 0.1

SEU counter – Radiation effects

 $Q_{crit} = C_{node}V_{dd} + I_{restore}/f$

Q = radiation induced charge C_{node} = capacity of the node I_{restore} = current restoring transistor f = frequency of event

Effect of lowering the bias V_{dd} :

- SEU sensitivity increased
- TID tolerance is decreased (writing more difficult because β(Q4)/β(Q2) increased)

SEU counter – Proton irradiation

60 MeV protons

Pin Diode - BPW34FS key characteristics

- Temperature coefficient :
 - 2.4 mV/°C vs 2.5 mV/°C (after 5 10¹² n/cm²)
- Linear dependence to 1 MeV neutron fluence
 - fluence > 4 10¹² n/cm²
- Annealing at room temperature very small

PIN diode – 1 MeV neutron response

Irradiation of a single diode

Pin Diode - response to 250 MeV protons

- Improved resolution for RADMON monitors
 - pre-irradiation with 4 x 10¹² n/cm² at 1 MeV
 - 3 diodes in series thermo compensated

RADMON radiation tests – 173 MeV neutrons

A.V. Prokofiev, M.B. Chadwick, S.G. Mashnik, N. Olsson, and L.S. Waters. Journal of Nuclear Science and Technology, Supplement 2, pp.112-115 (2002)

19

RADMON - response to 173 MeV neutrons

- Fluence : 1.5 x 10⁸ cm⁻²
- Flux : 1 x 10⁵ cm⁻² s⁻¹

Summary

- NMRC Radfets
 - Radiation response sufficiently well understood
 - 3 types (gate oxide thickness) allows for flexibility
 - 2 radfets in // to improve range <u>and</u> resolution

• SEU counters

- *Time resolution to radiation monitoring*
- 3 V : high resolution, increased uncertainty
- 5 V : reduced resolution, high precision
- Total Dose effects visible below 200 Gy

• PIN diodes

- Linear response to 1 MeV neutrons after ~3 x 10¹² neutrons
- Low fading at room temperature
- Very small variation of Temperature coefficient with n fluence
- Use of 3 pre irradiated diodes in // to provide :
 - improved resolution
 - remove initial threshold