MACHINE INDUCED BACKGROUNDS IN IR2 AND IR8

> Vadim TALANOV IHEP, Protvino

5th LHC RADIATION WORKSHOP CERN November 29 2005

Vadim Talanov CERN November 29 2005

INTRODUCTION

MACHINE INDUCED BACKGROUND AT THE LHC

- Secondary flux in the IRs induced by the beam losses in the machine
- Several origins (= sources of the background):
 - collimation inefficiency, beam-gas losses, collisions in the IPs
- ➤ These sources produce particles "scattered out" from the beam If followed by the interaction in the IR → Background flux towards the IP
- Absolute value scales with BEAM INTENSITY (among other operating conditions)

Workshop on the LHC backgrounds Example: losses at inner triplet \rightarrow cascades \rightarrow background flux

Vadim Talanov CERN November 29 2005

WHY IR2 & IR8?

SPECIFIC FEATURES OF THE IR2/8

Considering the background is important:

- Experiments will operate at low luminosity
 - → same beam (=background) as P1/5
 - \rightarrow no TAS at Q1 no shielding
- P2/8 are next to IR3/7 at Beam 2/1
 the closest limitations to the cleaning
- > P2/8 have P1 in between
 - → no cleaning for the losses from the IP1 (high luminosity IP!)

LHCb: "...contribution to the L0 trigger... varies from several percents to the whole filled output bandwidth... with strong dependence on the running conditions..." PRELIMINARY STUDIES2000: "perfect" machine2004: "realistic" operating conditions

BACKGROUND SOURCES

SOURCES CONSIDERED [LPN258]

The "DISTANT" sources

- Collimation "inefficiency"
 - → Out-scattered halo not intercepted by the collimators of the CS insertion
- Elastic scattering in the cold sectors between IR and CS insertion

- → ONLY "elastic" products will be transported downstream by the optics!
- Interactions with residual gas in the IR
 - \rightarrow both elastic and inelastic
- Collisions in the neighbouring IP

P1→IR8 probability distribution

NO QUENCH - NO BACKGROUND ?

TERTIARY BACKGROUND

The source is the halo out scattered from the IR7 and cleaned in the IR8 by the TCTs

- Two tertiary collimators in each part of LSS8
- Vertical TCT at D1, horizontal at D2
 - \rightarrow D2-D1 is the longest drift in SS
- Heavy (tungsten) collimators

FORMULATION OF THE PROBLEM

- TCTs are here to protect D1-Q1 from quench
 - \rightarrow an aperture limitation in the IR
- The "cleaned" protons will be converted to a "tertiary" background towards the IP

LPN371: for elastic beam-gas losses TCTs in IR1 are the dominant background source

TERTIARY BACKGROUND (1)

SECONDARY PARTICLE FLUX AT THE IP8

Source: loss maps generated within Collimation Project

- Vertical halo in TCTV and horizontal in TCTH
- Re-normalised for the 30 hours beam lifetime
- → LPN273: "1,03x10⁶ muons/s ... under the "3rd year +90days" LHC running conditions..."

TOTAL PARTICLE FLUX

Charged hadrons Muons VH@TCTV 3,66x10⁶ 1,05x10⁶ HH@TCTH 1,26x10⁵ 5,15x10⁴

Vadim Talanov CERN November 29 2005

RADIAL DISTRIBUTION

- Particle flux density f(r)
 [particles/cm2/s]
- For charged hadrons/muons
- Compared with LPN307
- → beam-gas estimates for NO SHIELDING case

BACKGROUND SHIELDING

SHIELDING PLUGS IN THE IR2/8

Detector protection from the background as inner/forward shielding at the P1/5

- Proposed in 2002 [LPN307]
- \succ The closer to IP/beam line the better \rightarrow Several installation constraints!
- Specific design for left/right parts of SS
- The possibility of a "staging" approach

TERTIARY BACKGROUND (2)

BACKGROUND IN THE PRESENCE OF THE SHIELDING

Combined model of simulations

 10^{3}

 10^{2}

10

10 -1

10 -2

50

100

150

charged hadrons/cm²/s

- Same maps of the losses in the TCTs
- Shielding introduced in the left part of the LSS8
- Results compared to the previous TOTAL numbers

10 -2

0

250

r, cm

200

50

100

Charged hadrons Muons VH@TCTV 3,66x10⁶ 1,05x10⁶ 4.51x10⁴ 2.71x10⁵

BACKGROUND SHIELDING

HH@TCTH 1,26x10⁵ 5,15x10⁴ 3.21x10³ 2.72x10⁴

EFFECT OF THE SHIELDING

- Charged hadrons flux removed at large radii
- Reduction factors charged hadrons: ~ 100 muons: 2÷4 (depending on halo type)
- ...minor effect around vacuum chamber...

150

200

250

r, cm

Vadim Talanov CERN November 29 2005

LHC MIB WORKING GROUP

MACHINE INDUCED BACKGROUND WG

Forum on Detector Protection and Background Shielding

- Established in 2005 by TS/LEA
- Complex study of MIB problem
 - → Analysis of the background formation
 Prediction of the dynamics at different stages of machine operation
 Reduction and rejection from the signal

COLLABORATION WITH OTHER GROUPS

The study of the machine background is cooperative

- Collimation project
- Vacuum group
- Experimental collaborations

More information on WG pages at: cern.ch/lhc-background

Vadim Talanov CERN November 29 2005