Beam Loss Monitors

B. Dehning

BLM Locations in the Arcs

- 3 loss locations simulated: shower development in the cryostat, GEANT 3 & 4.
- The positions of the BLMs are chosen to:
 - minimize crosstalk
 - reduce difference between inside and outside loss

Location of Loss Detectors at IP8

	Ν.	Location	IC	SEM		N.	Location	IC	SEM	
left					right					
	1	BPMSW.1L8	1	1	Ū	1	BPMSW.1R8	1	1	
	2	MQXA.1L8	6			2	MQXA.1R8	6		
	3	MQXB.A2L8	6			3	MQXB.A2R8	6		
	4	MQXA.3L8	6			4	MQXA.3R8	6		
	5	TCTV.4L8.B1	1	1		5	TCDD.4R8	3	3	
	6	TCLIA.4L8.B2	1	1		6	TCTV.4R8.B2	1	1	
	7	TCTH.4L8.B1	1	1		7	TDI.4R8	3	3	
	8	MBRC.4L8	1	1		8	TCTH.4R8.B2	1	1	
	9	MQY.A4L8	6			9	MBRC.4R8	1	1	
	10	MQM.A5L8	6			10	MQY.A4R8	6		
	11	TCLIB.6L8.B2	1	1		11	MQY.A5R8	6		
	12	MQML.6L8	6			12	MSIA.A6R8	3	3	
	13	MQM.A7L8	6			13	MSIB.A6R8.	3	3	
	14	MBA.8L8	6			14	MQM.6R8	6		
		MBA.8L8		6		15	MQM.A7R8	6		
	15	MQML.8L8	6			16	MBA.8R8	6		
	16	MQM.9L8	6				MBA.8R8		6	
	17	MQML.10L8	6			17	MQML.8R8	6		
	18	MBA.11L8	6			18	MQM.9R8	6		
		MBA.11L8		6		19	MQML.10R8	6		
	19	MQ.11L8	6			20	MBA.11R8	6		
							MBA.11R8		6	
						21	MQ.11R8	6		
			_			22	MQ.12R8	6		
	20	MQ.12L8	6			23	MQ.13R8	6		
	21	MQ.13L8	6			24	MQ.14R8	6		
	22	MQ.14L8	6			25	MQ.15R8	6		
	23	MQ.15L8	6			26	MQ.16R8	6		
	24	MQ.16L8	6					-		

- At every element several detectors mounted on:
 - cryostat
 - support
- Detectors:
 - Ionisation chambers
 - Secondary emission

Ionisation chamber LHC

- Stainless steal cylinder
- Parallel electrodes separated by 0.5 cm
- Al electrodes
- Low pass filter at the HV input
- N₂ gas filling at 100 mbar over pressure
- Diameter 8.9 cm
- Length 60 cm
- Sensitive volume 1.5 l
- Voltage 1.5 kV
- Ion collection time 85 us

LHC acquisition board

LHC tunnel card

Current to Frequency Converter and Radiation

Radiation caused offset by DAC induced current compensation

LHC transmission check

At the Surface FPGA:

- Signal CRC-32
 - Error check / detection algorithm for each of the signals received.
 - Comparison of the pair of signals.
 - Select block
 - Logic that chooses signal to be used
 - Identifies problematic areas.
 - Tunnel's Status Check block
 - HT, Power supplies
- FPGA errors

Temperature

Beam on FPGA, SEU & Transmission Errors check

Test Procedure of Signal Chain

- Basic concept: Automatic test measurements in between of two fills
 - Measurement of 10 pA bias current at input of electronic
 - Modulation of high voltage supply of chambers
 - Check of components in Ionisation chamber (R, C)
 - Check of capacity of chamber (insulation)
 - Check of cabling
 - Check of stable signal between a few pA to some nA (quench level region)
 - Not checked: the gas gain of chamber (in case of leak about 50 % gain change, signal speed change to be checked)

Some Specification Requirements

- DATA FOR THE CONTROL ROOM AND THE LOGGING SYSTEM
 - Loss rates normalized quench level, (energy and integration timeindependent) (units need still to be defined)
 - Updated every second
 - Allow frequency spectrum analysis
 - Long term summation for comparisons with dose detectors
- POST-MORTEM ANALYSIS
 - Stored data: 100 1000 turns before post mortem trigger
 - Average rates: a few seconds to 10 minutes before a beam-dump
- False dumps
 - less than one per month (about 2 to 3 per month, simulations)
- BEAM 1/BEAM 2 DISCRIMINATION
 - If possible, higher tuning efficiency
- A set of movable BLM's

Beam Dump at HERA

- Aim of setup
 - BLM system test
 - Verification of Geant simulation
 - Beam losses dynamic observations
- LHC measurement setup
 - 6 chambers in top of internal dump
 - 1 before and 1 after the dump

Dose Measurements at the HERA Beam Dump

Dose Measurements at the HERA Beam Dump, zoom

SPS Ionisation Chamber Spectrum Response

- Ionisation chambers:
 - H6 line measurements
 - HERA Dump
 - Response to mixed radiation field (chambers outside cryostat)
 - Comparisons with simulations (shown by H. Vincke)
 - Thesis M.Stockner

SEM

- Same procedure as for ion. ch.
- BOOSTER
- PSI
- Thesis D. Kramer

LHC Bending Magnet Quench Levels, LHC Project Report 44

0.8 mJ/cm3 = 0.09 mJ/g (RHIC=2 mJ/g, Tevatron=0.5mJ/g)

(RHIC = 8 mW/g, Tevatron = 8mW/g)

Systematic Uncertainties at Quench Levels

	relative accuracies	Correction means		
Electronics	< 10 %	Electronic calibration		
Detector	< 10 – 20 %	Source, sim., measurements		
Radiation & analog elec.	about 1 %			
fluence per proton	< 10 - 30 %	sim., measurements with beam (sector test, DESY PhD)		
Quench levels (sim.)	< 200 %	measurements with beam (sector test), Lab meas., sim. fellow)		
Topology of losses (sim.)	?	Simulations		

Loss Levels and Required Accuracy

Relative	e loss levels					
	450 GeV	7 TeV	Specification:			
Damage to components	320/5 <i>tran./slow</i>	1000/25 <i>tran./slow</i>	Absolute< factor 2precisioninitially:(calibration)< factor 5			
Quench level	1	1				
Beam dump threshold for quench prevention	0.3 0.3/0.4 <i>tran./slow</i>		Relative precision for< 25%			
Warning	0.1	0.1/0.25 <i>tran./slow</i>	prevention			

Accurately known quench levels will increase operational efficiency

TT41 Beam DUMP

- Beam Dump design similar to HEARA dump
- Dose for impact of 450 GeV protons