

5th LHC Radiation workshop 28 Nov 2005, Lucie Linssen slide 1

With the preparations for LHC..... radiation tolerance of equipment has also become a major issue for particle physics experiments

Radiation Workshop Intro

Radiation tolerance is now an issue of both experiments and accelerator covering many fields:

- Activation calculations
 - Understanding of processes simulation tools
- Irradiation of materials
 - Assessing and understanding
 - Global performance degradation <> SEU
 - Finding ways out to keep performance under radiation
 - e.g. design issues of radiation-hard electronics components
 - e.g. rad-hard silicon, running/maintaining at low temperature
- Passive protection of equipment against radiation
 - e.g. collimation
 - e.g. neutron absorbers near calorimeters

Radiation Workshop Intro

- ... covering many fields, continued:
- Measuring radiation levels
 - Passive dosimetry
 - Active dosimetry
- Signalling increased fluxes
 - Beam loss monitors (accelerator)
 - Beam condition monitors (experiments)
- .. not forgetting:
 - Personnel protection
 - Dosimetry
 - Radiation monitoring

Irradiation facilities

To assess the radiation hardness of equipment and their performance under radiation, irradiation facilities are used.

Several facilities were set-up within CERN Many facilities are used outside CERN

The use of these external facilities is often coordinated by someone from our community

CERN irradiation facilities

No.

0

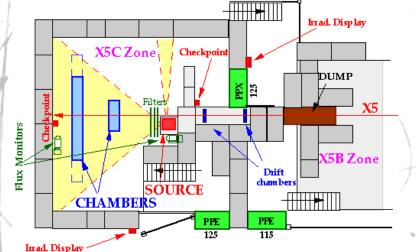
	Location	Country	Facility	Particle s	Energy	Flux	Contact at PH
*	· • • • • /	5) for	(\land)		and a second
	CERN	СН	PS-IRRAD1	р	23 GeV	3x10 ¹³ p/hour/c m ²	M.Glaser
	CERN	СН	PS-IRRAD1	mixed	Secondary particles used for SEU tests	50 mGy/hour	M.Glaser
	CERN	СН	PS-IRRAD2	n	~ 1 MeV (23 GeV p+C)	10 ¹³ n/hour/c m ²	M.Glaser
1 12	CERN	СН	GIF	γ	¹³⁷ Cs	740 GBq (1997)	M. Clayton
į.	CERN	СН	Building 27	γ	⁶⁰ Co	0.15 Gy/hour	E. Auffray Hilleman S
7	ALL AND AND AND ALLAND						

External Facilities pi, p, n, ion

	I toma I i	/				
Location	Country	Facility	Particl es	Energy	Flux	Contact at PH
.8.	9	SP-A		1		
PSI	СН	piE1	pi	191 MeV	10 ¹⁴ π/day/cm ²	M.Glaser
				up to 250 MeV		-
PSI	СН	PIF	р	(up to 5x5 cm ²)	3x10 ⁸ p/cm ² /s	F.Faccio
Ljubljana	SI	JSI	n	~ 1 MeV (reactor)	5x10 ¹² n/cm ² /s	M.Glaser
Louvain	BE	UCL-T2	n	<20.4 MeV> (d+Be)	7x10 ¹² n sr ⁻¹ s ⁻¹	K.Gill
Louvain	BE	UCL-Q	n	25 to 70 MeV (p+Li)	10 ⁶ n/s	F. Faccio
Louvain	BE	UCL-LIF	р	10 to 75 MeV	10 ⁹ p/s/cm ²	F. Faccio
Louvain	BE	UCL-LIF	ions	10 to 75 MeV	10 ⁹ p/s/cm ²	F. Faccio
Uppsala	SE	TSL	n	157	6x10 ⁷ p/s/cm ²	F.Faccio
Valduc	FR	PROSPERO	n	~ 1 MeV (reactor)	10 ¹⁴ n/hour/cm ²	-
Karlsruhe	DE	KAZ	р	20 to 42 MeV	10 ¹⁴ p/hour/cm ²	-
Jyvaskyla	FI	RADEF	р	10 to 50 MeV	10 ¹⁰ p/s/cm ²	-
1.12	- H	AND	AA	NO .	111	

External facilities, gamma

0


1ª

CALL /	1 891 Y. J.		1000			
Location	Country	Facility	Partic le s	Energy	Flux	Contact at PH
	1		a for	$\left(\right)$		
BNL	US	SSIF	γ	⁶⁰ Co	5x10³ Gy/hour	-
Mol	BE	SCK-CEN BRIGITTE	γ	⁶⁰ Co	2x10 ³ Gy/hour	K. Gill
Mol	BE	SCK-CEN RITA	γ	⁶⁰ Co	20x10 ³ Gy/hour	K. Gill
Louvain	BE	UCL	γ	⁶⁰ Co	2x10³ Gy/hour	
Dagneux	FR	Ionisos	γ	⁶⁰ Co	1x10³ Gy/hour	
						E. Auffray Hilleman
Geneve	СН	HUG hospital	γ	⁶⁰ Co	320 Gy/hour	S
THE ARD STAND						

Future of GIF

- The Gamma Irradiation Facility
 - was set-up in West area SPS beam
 - high intensity 60Co-source
 - Even after west area beam dismantling still heavily used by the experiments

Future of GIF

Need of a new combined facility in the SPS North area? Justification of needs and combination with facilities of/for other Departments?

OUTLOOK

Many departments -- SC, TS, AT, AB, PH - work on radiation issues

Due to different natures of the tasks, lots of work work is done independently, other work is performed in close collaboration

The RADIATION WORKSHOP is a unique opportunity to:

- Learn about the work done in the various CERN domains
- Identify possible areas of synergy
- Improve collaboration
 - LEARN from experiences outside CERN