

ATLAS plans for 2006: Computing System Commissioning and Service Challenge 4

Dario Barberis CERN & Genoa University

Dario Barberis: ATLAS SC4 Plans

Computing System Commissioning Goals

- We have defined the high-level goals of the Computing System Commissioning operation during 2006
 - Formerly called "DC3"
 - More a running-in of continuous operation than a stand-alone challenge
- Main aim of Computing System Commissioning will be to test the software and computing infrastructure that we will need at the beginning of 2007:
 - Calibration and alignment procedures and conditions DB
 - Full trigger chain
 - Event reconstruction and data distribution
 - Distributed access to the data for analysis
- At the end (autumn-winter 2006) we will have a working and operational system, ready to take data with cosmic rays at increasing rates

Computing System Commissioning Tests

- Sub-system tests with well-defined goals, preconditions, clients and quantifiable acceptance tests
 - Full Software Chain
 - Tier-0 Scaling
 - Calibration & Alignment
 - Trigger Chain & Monitoring
 - Distributed Data Management
 - Distributed Production (Simulation & Re-processing)
 - Physics Analysis
 - Integrated TDAQ/Offline (complete chain)
- Each sub-system is decomposed into components
 - E.g. Generators, Reconstruction (ESD creation)
- Goal is to minimize coupling between sub-systems and components and to perform focused and quantifiable tests
- Detailed planning being discussed now
 - also in relation with WLCG Service Challenge 4 schedule (see later slides)

"Realism" underway

- Updating dead material
 - Cables, services, barrel/end-cap cracks, etc.
- Define reference coordinate systems
 - GLOB=installation survey, SOL(t), BEAM(t)
- Realistic B-field map taking into account non-symmetric coil placements
 - B-field map size issues...
- Displace detector (macro)-pieces to describe their actual positions
 - E.g. EM barrel axis 2mm below beam line and solenoid axis
 - Break symmetries and degeneracy in detector descript and simulation
- Include detector "egg-shapes" if relevant
 - E.g. Tilecal elliptical shape if it is has an impact on B-field...
- Mis-align detector modules/chambers inside macro pieces
- Include chamber deformations, sagging of wires and calo plates, etc.
 Probably at digitization/reconstruction level
- Dedicated workshops held to give coherence to these efforts

Calibration/alignment "challenge"

- Part of the overall computing system commissioning activity
 - Demonstrate the calibration 'closed loop' (iterate and improve reconstruction)
 - > Athena support for conditions data reading / writing / iteration
 - Reconstruction using conditions database for all time-varying data
 - Exercise the conditions database access and distribution infrastructure
 - With COOL conditions database, realistic data volumes and routine use in reconstruction
 - > In a distributed environment, with true distributed conditions DB infrastructure
 - Encourage development of subdetector calibration algorithms
 - Going on anyway, but provide collaboration-wide visibility to this work
 - Calibration done in a realistic computing environment
- Initially focussed on 'steady-state' calibration
 - Largely assuming required samples are available and can be selected
 - But also want to look at initial 2007/2008 running at low luminosity
 - Selecting events from the 'initial realistic data sample'
 - Issues of streaming using calibration and physics data Dario Barberis: ATLAS SC4 Plans

Calib/Align - prerequisites for success

- Simulation
 - Ability to simulate a realistic, misaligned, miscalibrated detector
 - Geometry description and use of conditions DB in distributed simulation and digitisation
 - Static replication of conditions database to support this parameters in advance

Reconstruction

- Use of calibration data in reconstruction; ability to handle time-varying calibration
- Initially, static replication of conditions database parameters in advance
- Later, dynamic replication (rapidly propagate new constants) to support closed loop and 'limited time' exercises

Calibration algorithms

- Algorithms in Athena, running from standard ATLAS data (ESD, raw data?)
 - > Ability to deal with substantial fractions of the whole subdetector
- Currently focussed on subdetector studies, would be nice to exercise some 'global calibration' E/p, spatial matching etc

Management

- Organisation and bookkeeping (run number ranges, production system,...)
 - > How do we ensure all the conditions data for simulation is available with right IoVs?
 - > What about defaults for 'private' simulations ?

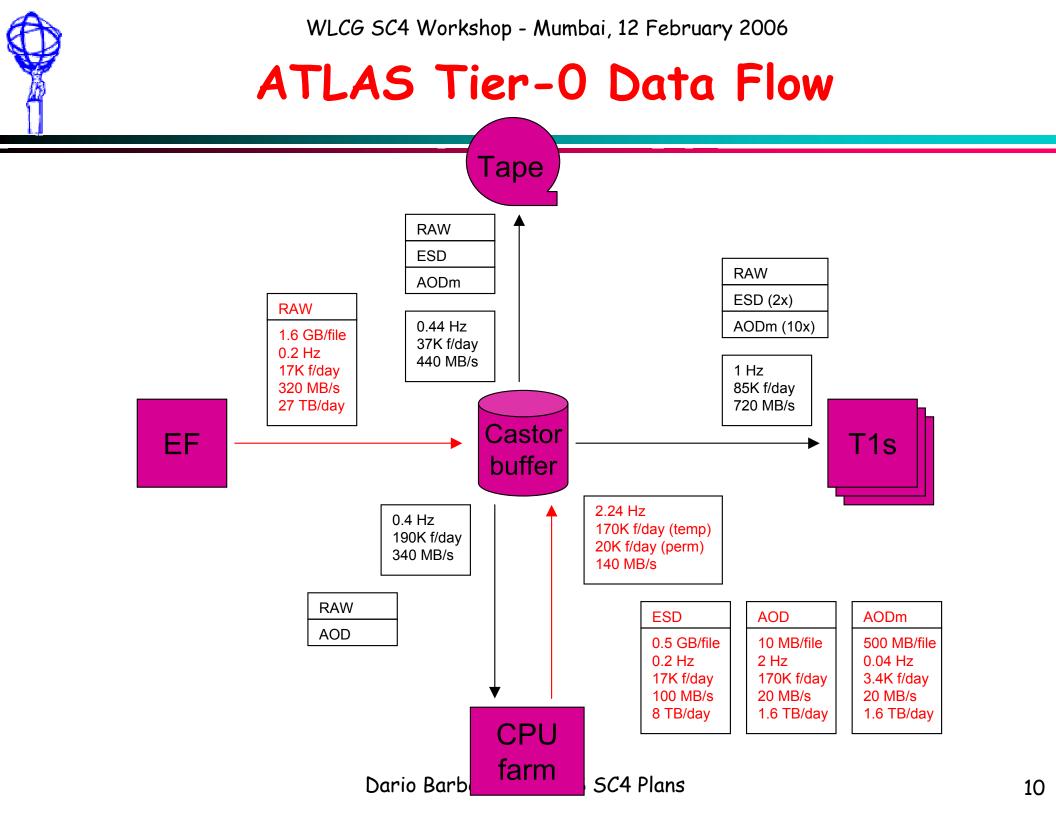
Cal/Align - calibration parameters

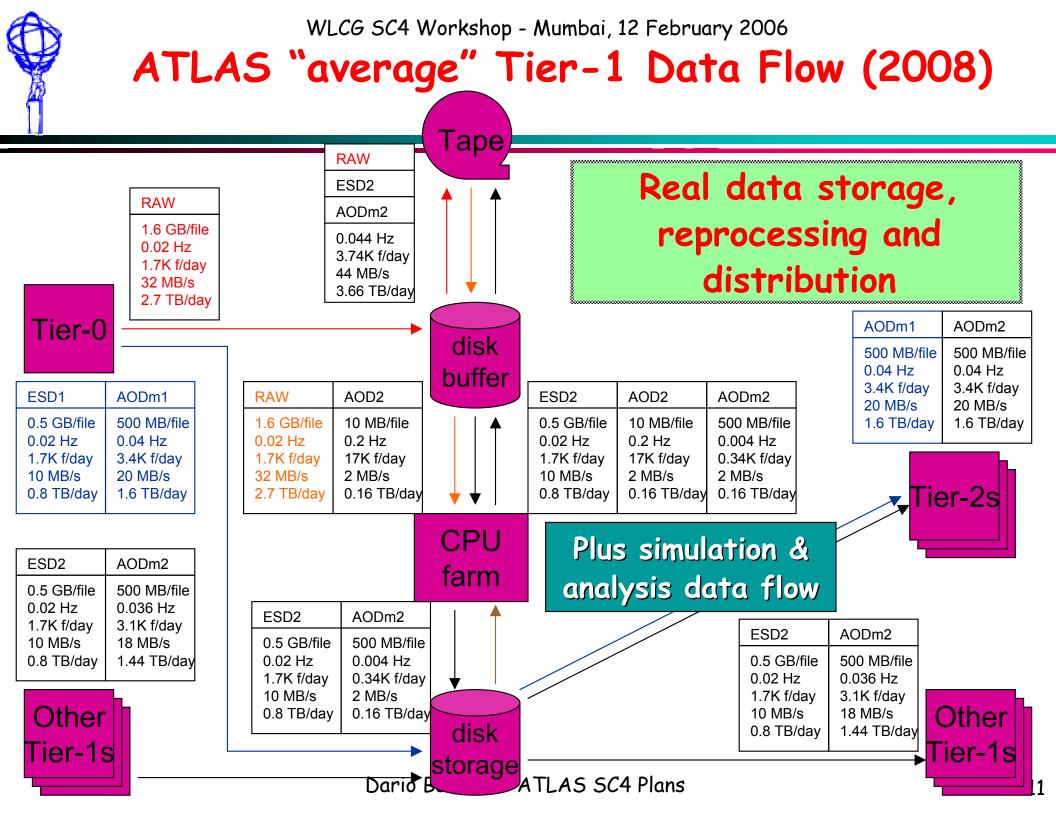
• Subdetector parameters to be exercised (red already done for CTB)

SCT/Pixel	Alignment, dead/noisy channels, module distortions, pixel calib/thresholds
TRT	Module align., wire position, t_0 , R-t, dead channels, resolution, efficiency
LAr	Electronics calibration, HV, cluster level corrections, dead material, misalignment
HEC	(Focus on energy/eta parameterisation)
TileCal	CIS calibration, cesium calibration, optimal filter coefficients
MDT	t ₀ , R-t, alignment corrections, temperature/field/sag/space charge corr ⁿ
RPC	Pressure/temp, thresholds, HV/LV, currents, dead strip/efficiencies map, trig coinc.
CSC	ADC to strip charge, chamber alignment
TGC	Timing, delays, chamber alignment

Software release plans in 2006

- End March: release 12
 - Full geometry upgrade: complete implementation of the "as-built" geometry
 - Conditions DB infrastructure in place and significant usage of COOL by subdetectors
 - Includes ROOT5 and CORAL
 - Trigger EDM in place
 - Implementation of MC Truth Task Force recommendations
 - Implementation of Event Tag working group recommendations
- End July: release 13
 - Calibration/alignment loop
 - Full schema evolution for event data
 - Support for cosmic runs in autumn 2006
- December: release 14
 - Performance optimization: CPU time, memory, physics performance
 - > Including shower parameterization in the calorimeters
 - Further geometry upgrade including detector survey data
 - Full schema evolution for conditions data


Dario Barberis: ATLAS SC4 Plans



ATLAS Computing Model

• Tier-0:

- Copy RAW data to Castor tape for archival
- Copy RAW data to Tier-1s for storage and reprocessing
- Run first-pass calibration/alignment (within 24 hrs)
- Run first-pass reconstruction (within 48 hrs)
- Distribute reconstruction output (ESDs, AODs & TAGS) to Tier-1s
- Tier-1s:
 - Store and take care of a fraction of RAW data
 - Run "slow" calibration/alignment procedures
 - Rerun reconstruction with better calib/align and/or algorithms
 - Distribute reconstruction output to Tier-2s
 - Keep current versions of ESDs and AODs on disk for analysis
- Tier-2s:
 - Run simulation
 - Keep current versions of AODs on disk for analysis

ATLAS SC4 Tests

- Complete Tier-0 test
 - Internal data transfer from "Event Filter" farm to Castor disk pool, Castor tape, CPU farm
 - Calibration loop and handling of conditions data
 - > Including distribution of conditions data to Tier-1s (and Tier-2s)
 - Transfer of RAW, ESD, AOD and TAG data to Tier-1s
 - Transfer of AOD and TAG data to Tier-2s
 - Data and dataset registration in DB (add meta-data information to meta-data DB)
- Distributed production
 - Full simulation chain run at Tier-2s (and Tier-1s)
 - Data distribution to Tier-1s, other Tier-2s and CAF
 - Reprocessing raw data at Tier-1s
 - Data distribution to other Tier-1s, Tier-2s and CAF
- Distributed analysis
 - "Random" job submission accessing data at Tier-1s (some) and Tier-2s (mostly)
 - Tests of performance of job submission, distribution and output retrieval

ATLAS SC4 Plans (1)

• Tier-O data flow tests:

- Phase 0: 3-4 weeks in March-April for internal Tier-0 tests
 - > Explore limitations of current setup
 - Run real algorithmic code
 - > Establish infrastructure for calib/align loop and conditions DB access
 - Study models for event streaming and file merging
 - > Get input from SFO simulator placed at Point 1 (ATLAS pit)
 - > Implement system monitoring infrastructure
 - Phase 1: last 3 weeks of June with data distribution to Tier-1s
 - > Run integrated data flow tests using the SC4 infrastructure for data distribution
 - > Send AODs to (at least) a few Tier-2s
 - Automatic operation for O(1 week)
 - > First version of shifter's interface tools
 - Treatment of error conditions
- Phase 2: 3-4 weeks in September-October
 - > Extend data distribution to all (most) Tier-2s
 - > Use 3D tools to distribute calibration data
- The ATLAS TDAQ Large Scale Test in October-November prevents further Tier-0 tests in 2006...
 - ... but is not incompatible with other distributed operations

ATLAS SC4 Plans (2)

- ATLAS CSC includes continuous distributed simulation productions:
 - We will continue running distributed simulation productions all the time
 - Using all Grid computing resources we have available for ATLAS
 - > The aim is to produce ~2M fully simulated (and reconstructed) events/week from April onwards, both for physics users and to build the datasets for later tests
 - We can currently manage ~1M events/week; ramping up gradually
- SC4: distributed reprocessing tests:
 - Test of the computing model using the SC4 data management infrastructure
 - Needs file transfer capabilities between Tier-1s and back to CERN CAF
 - Also distribution of conditions data to Tier-1s (3D)
 - Storage management is also an issue
 - Could use 3 weeks in July and 3 weeks in October
- SC4: distributed simulation intensive tests:
 - Once reprocessing tests are OK, we can use the same infrastructure to implement our computing model for simulation productions
 - > As they would use the same setup both from our ProdSys and the SC4 side
 - First separately, then concurrently

ATLAS SC4 Plans (3)

- Distributed analysis tests:
 - Random" job submission accessing data at Tier-1s (some) and Tier-2s (mostly)
 - > Generate groups of jobs and simulate analysis job submission by users at home sites
 - Direct jobs needing only AODs as input to Tier-2s
 - Direct jobs needing ESDs or RAW as input to Tier-1s
 - > Make preferential use of ESD and RAW samples available on disk at Tier-2s
 - > Tests of performance of job submission, distribution and output retrieval
 - > Test job priority and site policy schemes for many user groups and roles
 - Distributed data and dataset discovery and access through metadata, tags, data catalogues.
 - Need same SC4 infrastructure as needed by distributed productions
 - > Storage of job outputs for private or group-level analysis may be an issue
 - Tests can be run during Q3-4 2006
 - First a couple of weeks in July-August (after distributed production tests)
 - > Then another longer period of 3-4 weeks in November

Overview of requirements for SC4

- SRM ("baseline version") on all storages
- VO Box per Tier-1 and in Tier-0
- LFC server per Tier-1 and in Tier-0
- FTS server per Tier-1 and in Tier-0
- Disk-only area on all tape systems
 - Preferably we could have separate SRM entry points for "disk" and "tape" SEs. Otherwise a directory set as permanent ("durable"?) on disk (non-migratable).
 - Disk space is managed by DQ2.
 - Counts as *online ("disk") data* in the ATLAS Computing Model
- Ability to install FTS ATLAS VO agents on Tier-1 and Tier-0 VO Box (see next slides)
- Single entry point for FTS with multiple channels/servers
- Ability to deploy DQ2 services on VO Box as during SC3
- No new requirements on the Tier-2s besides SRM SE

Movement use cases for SC4

- EF -> Tier-0 migratable area
- Tier-0 migratable area -> Tier-1 disk
- Tier-O migratable area -> Tier-O tape
- Tier-1 disk -> Same Tier-1 tape
- Tier-1 disk -> Any other Tier-1 disk
- Tier-1 disk -> Related Tier-2 disk (next slides for details)
- Tier-2 disk -> Related Tier-1 disk (next slides for details)
- Not done:
 - Processing directly from tape (not in ATLAS Computing Model)
 - Automated multi-hop (no 'complex' data routing)
 - Built-in support for end-user analysis: goal is to exercise current middleware and understand its limitations (metrics)

Tiers of ATLAS

- DQ2 and ProdSys require a Tier-2 to be associated with a Tier-1
- This "virtual" association does not bring additional responsibilities to the sites, except:
 - Tier-1 is responsible for setting up and managing the FTS channel to "its" Tier-2s, as requested by ATLAS
 - Tier-2 will use the LFC server on the Tier-1 as its local catalog
- The "virtual" association is defined by ATLAS (along with the WLCG Collaboration) taking into consideration:
 - FTS channels / network connectivity
 - Available network bandwidth and storage at the Tier-1, wrt to "its" Tier-2s
 - May not be related to EGEE ROC, LCG ROC, ...
- Throughout SC4, ATLAS will exercise a simple hierarchical topology (maintained 'manually')

LFC

- The LFC server must be available at the Tier-O and at the Tier-1s
- Tier-2s will have their data registered at the Tier-1 LFC by the ATLAS production system
 - E.g. we manually reset LFC_HOST at the WNs
- Tier-O LFC: contains catalog entries corresponding to data on the Tier-O only
- Tier-1 LFC: contains catalog entries corresponding to its Tier-1 data and associated Tier-2s
- Tier-2: no LFC

Overview of FTS and VO Box

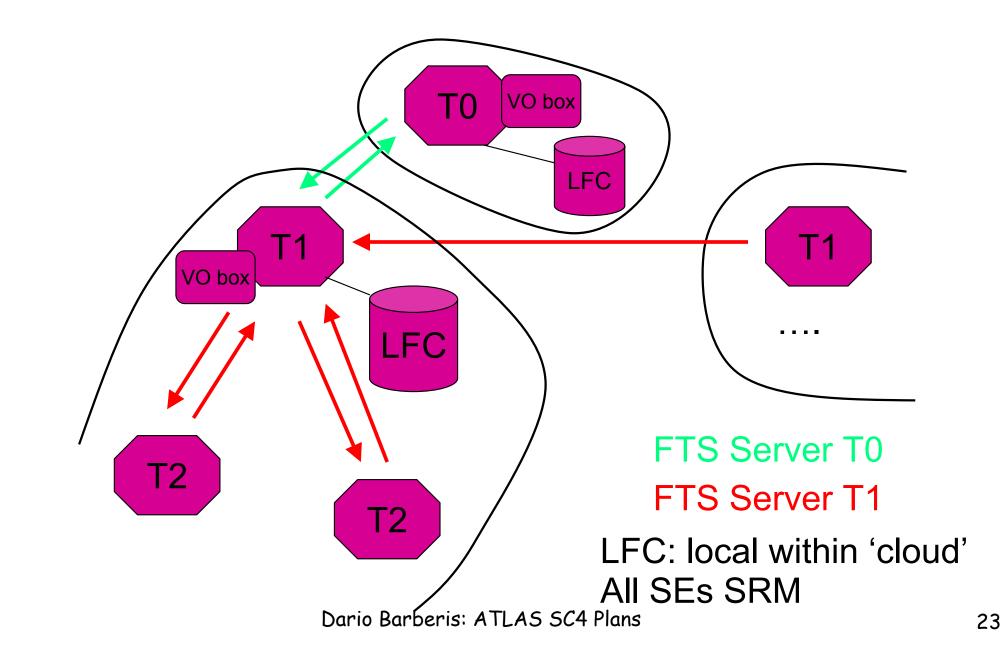
- While the VO Box is required for ATLAS (*c.f. VO Box discussion in NIKHEF end January*), new gLite 1.5 FTS provides new functionality discussed with the experiments during the FTS workshop
- ATLAS will, for LCG, slim down its VO Box agents and integrate them with FTS
 - Using what FTS calls "VO agents"
- But FTS requires some 'area' to host these VO agents!
- ATLAS proposes, for SC4, to use VO Boxes for this purpose
 - So ATLAS FTS servers are configured to use our VO agents hosted in our VO Box

)

- Very much an ATLAS-specific effort taking advantage of gLite FTS 1.5 functionality
- Facilitates growing of data management to many Tier2s (less ATLAS-specific deployment)
- Temporary solution for SC4 until FTS VO agents deployment model is found
- Hence, an ATLAS VO Box will contain:
 - FTS ATLAS agents
 - And remaining DQ2 persistent services (less s/w than for SC3 as some functionality merged into FTS in the form of FTS VO agents)

FTS integration and channels

- ATLAS will plug its DQ2 site services onto FTS, using FTS VO agents
 - VO agents will be hosted on the VO Box (still need to work out details with LCG)
- FTS channels must be available:
 - Tier-0 FTS server:
 - Channel from Tier-0 to all Tier-1s: used to move "Tier-0" (raw and 1st pass reconstruction data)
 - Channel from Tier-1s to Tier-0/CAF: to move e.g. AOD (CAF also acts as "Tier-2" for analysis)
 - Tier-1 FTS server:
 - Channel from all other Tier-1s to this Tier-1 (pulling data): used for DQ2 dataset subscriptions (e.g. reprocessing, or massive "organized" movement when doing Distributed Production)
 - \succ Channel to and from this Tier-1 to all its associated Tier-2s.
 - > Channel from Tier-0 to this Tier-1 (*not so relevant*)



VO Box

- Assuming presence of same LCG VO Box component as during SC3
 - But now supporting hosting of FTS VO Agents as well
 - Possibly adding common software (e.g Apache, MySQL) to default VO Box environment
- Tier-0 VO Box: contains DQ2 site services now including FTS ATLAS VO agents
- Tier-1 VO Box: contains DQ2 site services now including FTS ATLAS VO agents
- DQ2 site services will have associated SFTs for testing
- Tier-2 VO Box: not required
- Unclear: how to package, tag and deploy FTS VO agents?
 - Have within the LCG VO Box a standard container for FTS VO agents?

Tiers of ATLAS

ATLAS SC4 Requirement (new!)

- Small testbed with (part of) CERN, a few Tier-1s and a few Tier-2s to test our distributed systems (ProdSys, DDM, DA) prior to deployment
 - It would allow testing new m/w features without disturbing other operations
 - We could also tune properly the operations on our side
 - The aim is to get to the agreed scheduled time slots with an already tested system and really use the available time for relevant scaling tests
 - This setup would not interfere with concurrent large-scale tests or data transfers run by other experiments
- A first instance of such a system would be useful already now!
 - April-May looks like a realistic request

Summary of requests

- March-April (pre-SC4): 3-4 weeks in for internal Tier-O tests (Phase O)
- April-May (pre-SC4): tests of distributed operations on a "small" testbed
- Last 3 weeks of June: Tier-O test (Phase 1) with data distribution to Tier-1s
- 3 weeks in July: distributed processing tests (Part 1)
- 2 weeks in July-August: distributed analysis tests (Part 1)
- 3-4 weeks in September-October: Tier-O test (Phase 2) with data to Tier-2s
- 3 weeks in October: distributed processing tests (Part 2)
- 3-4 weeks in November: distributed analysis tests (Part 2)