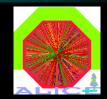
ALICE Use Cases for LCG-SC4

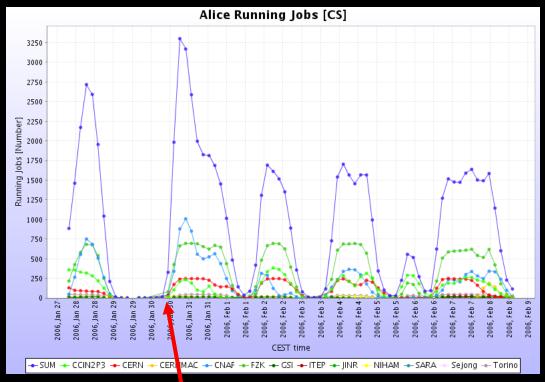
LCG-SC4 Workshop Mumbai, 10-12th, February, 2006

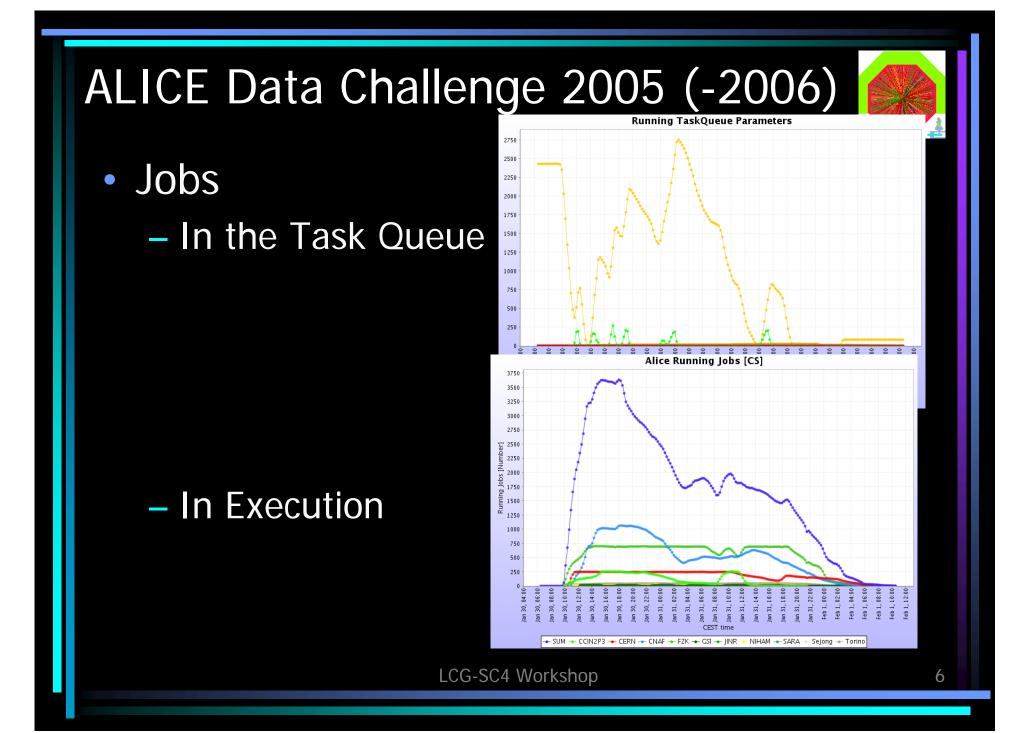
Piergiorgio Cerello (cerello@to.infn.it) INFN


Overview

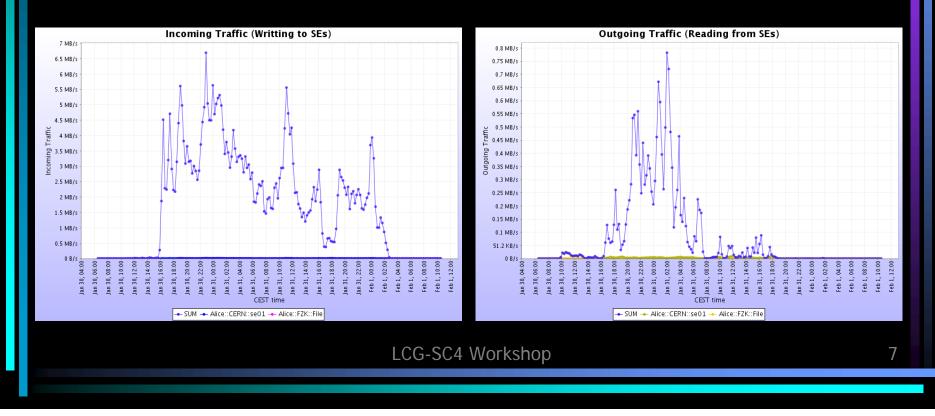
- ALICE Data Challenge 2005 (-2006)
 - Status
 - Lessons learnt
- ALICE Data Challenge(s) 2006
 - Final verification of computing model and GRID services readiness
 - Analysis Use cases
 - Plans

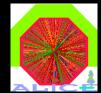
Part I ALICE Data Challenge 2005

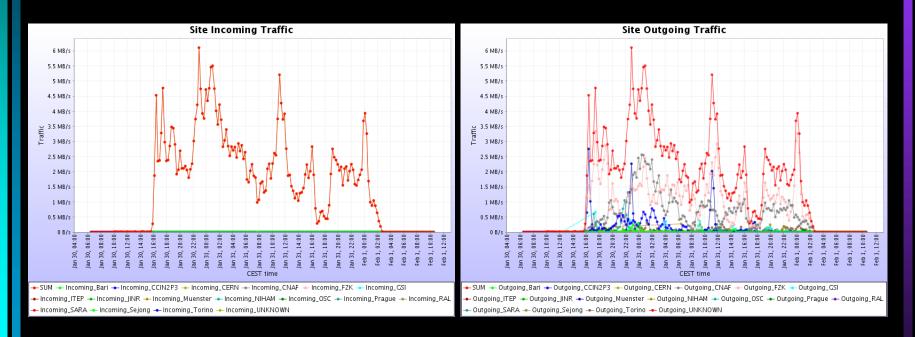


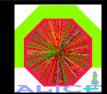

- Status
 - preparation started in the summer of 2005
 - Expected starting date: Sep, 1st, 2005
 - Ongoing
 - History of PDC'05 ALICE MonALISA repository <u>http://alimonitor.cern.ch:8889</u>
 - Hard to define a "starting date"
 - Several issues identified and solved on the way
 - Continuous process of tuning
 - Steady improvement in performance

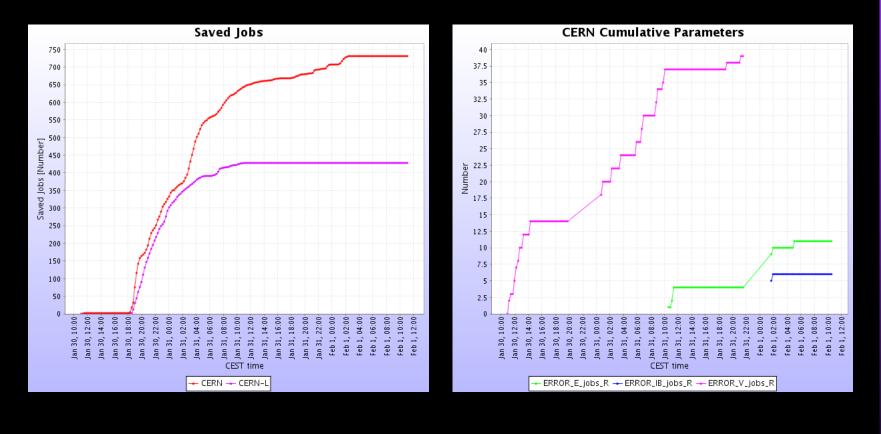
Jobs (last month)

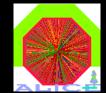


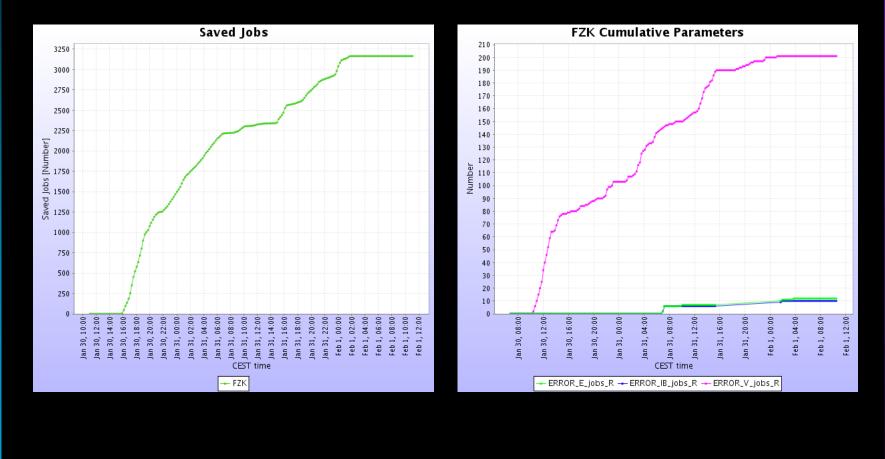

Focus on one "run"

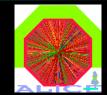

- Storage
 - Writing up to 7 MB/s
 - Reading up to 0.8 MB/s (testing mode)



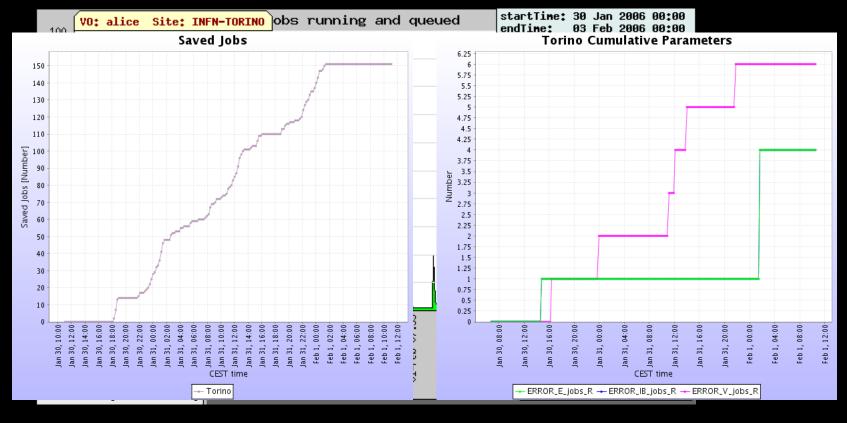

Network

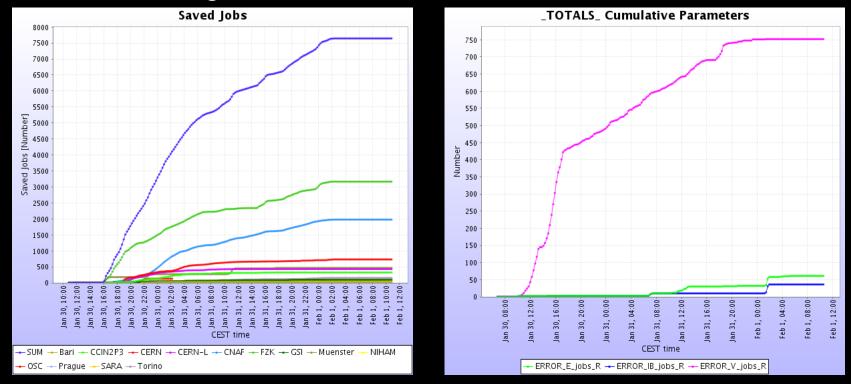

Incoming to CERN * Outgoing (other sites)

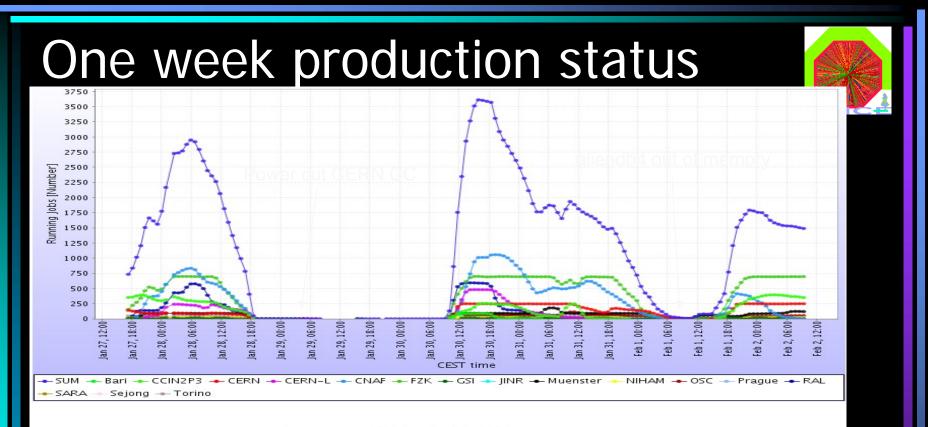


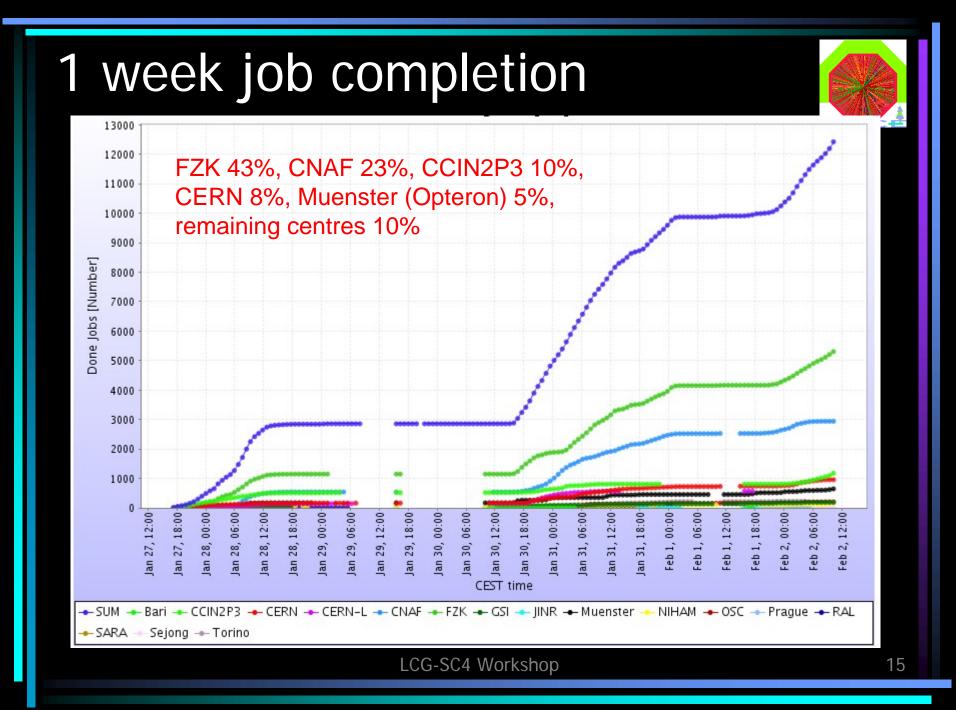

• Sites view: CERN

• Sites view: FZK


Sites view: CNAF


11


• Sites view: Torino


• Summary

About 10% errors, half of them from AliRoot

Alice Running Jobs [CS]						
Farm	Last value	Min	Avg	Max		
SUM	1490	0	1183	3651		
Bari	0	0	34.01	84		
CCIN2P3	349	0	176.1	399		
CERN	248	0	137.5	248		
CERN-L	0	0	146.1	483		
CNAF	4	0	363.7	1072		
FZK	696	0	442.9	700		
GSI	0	0	8.524	18		
JINR	0	0	0.277	7		
Muenster	119	0	76.63	180		
NIHAM	20	0	14.95	34		
OSC	52	0	45.17	120		
Prague	0.425	0	11.5	68		
RAL	0	0	161.4	595		
SARA	0	0	10.49	30		
Sejong	2	0	1.675	2		
Torino	0	0	29.33	47		



ALICE Data Challenge 2005(-2006) 1 week operation


- Task queue:
 - Up to 3750 concurrently running jobs (1200 average), same amount of jobs waiting in the TQ
 - 12500 completed jobs:
 - 100 MSi2K CPU/hours
 - 2 TB output (CASTOR2@CERN) 160 MB/job
- Central AliEn services (v.2-6):
 - Stable no interventions
 - Very responsive: both catalogue and job management
 - Approximately 5 sec/job from submission to WAITING state in the TQ (with the current hardware – 17K jobs/day).
- Site agents/services (v.2-6):
 - Stable no interventions

ALICE Data Challenge 2005(-2006) 1 week operation

• Storage:

- CASTOR2 stable
 - Setting-up of combined xrootd-CASTOR disk pool at CERN
 - Hardware setup already exists at GSI and Lyon need installaton/operation procedures
 - Site storage and scratch SEs stable

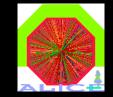
- Site tuning:
 - Added RAL local queue issue is now resolved
 - SARA has no computing capacity (20-30 jobs max) still to explore the possibility to submit from SARA VO-box to NIKHEF queues
 - Bari submitting to 'short' queue
 - Catania almost there
 - Russian T2s Mikalai is working
 - US at the moment Houston and OSC (Itanium queue being added)
 - Potentially 10 more T2s to be included in the production

- Lessons learnt
 - Remarkable improvement in amount of available resources and stability wrt 2004
 - Stability of services was very good
 - ALICE VO production operations can be managed by a small team
 - Good and efficient coordination of operation with computing centres and LCG deployment team through ALICE-LCG task force group

- Lessons learnt
 - Satisfactory integration with baseline LCG services through the VO-box setup
 - Demonstrated capability of central services and site components to manage computing resources on a level similar to the one expected in 2006
 - We are confident that the "production mode" for simulation and reconstruction will work

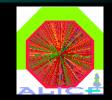
Part II ALICE Data Challenge 2006

ALICE Data Challenges 2006

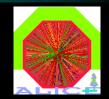


- Last chance to show that things are working together (i.e. to test our computing model)
- whatever does not work here is likely not to work when real data are there

- So we better plan it well and do it well


ALICE Data Challenges 2006

- Three main objectives
 - Computing Data Challenge
 - Final version of rootifier / recorder
 - Online data monitoring
 - Physics data challenge
 - Simulation of signal events: 10⁶ Pb-Pb, 10⁷⁻⁸ p-p
 - Final version reconstruction
 - Data analysis
 - PROOF data challenge
 - Preparation of the fast reconstruction / analysis framework

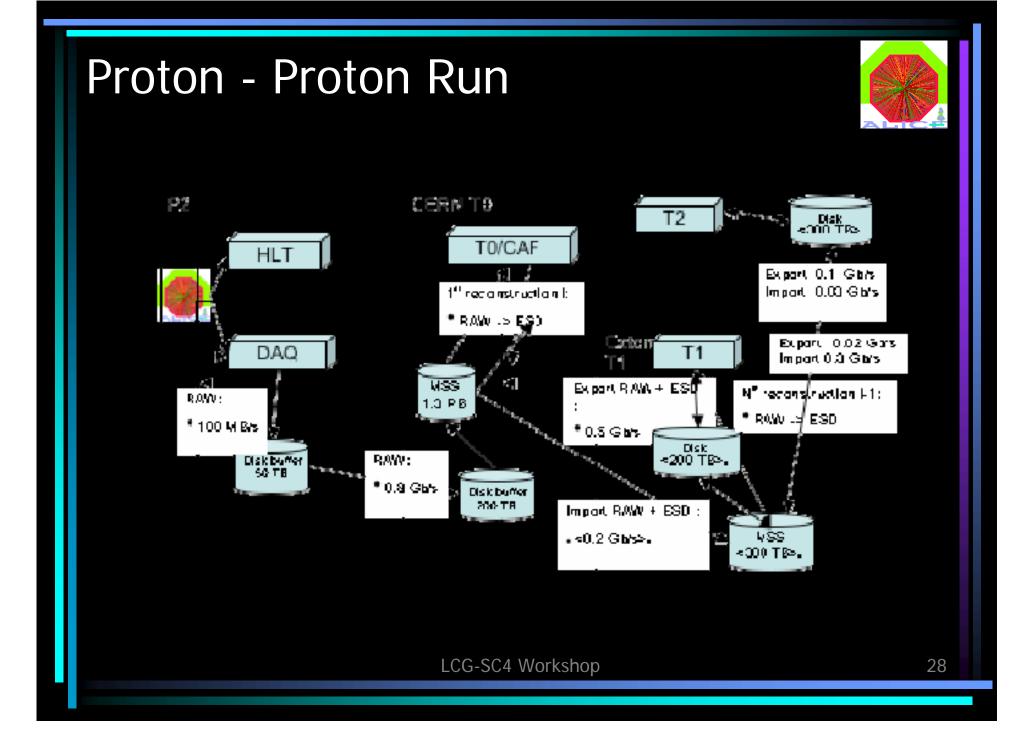


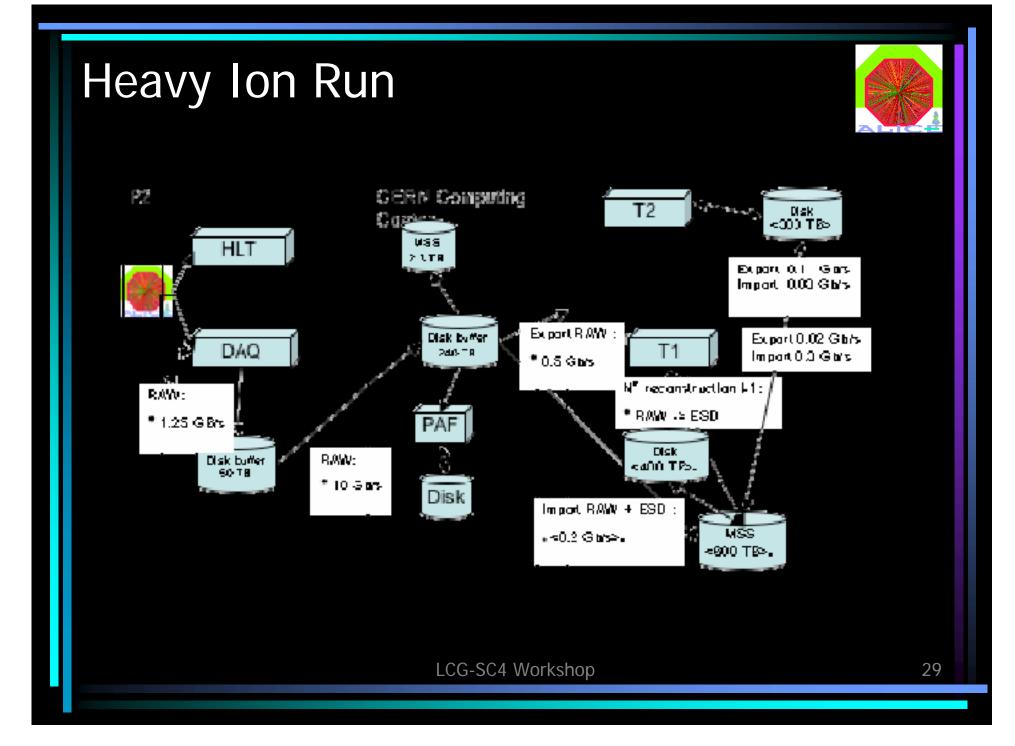
SC4 – Service Validation

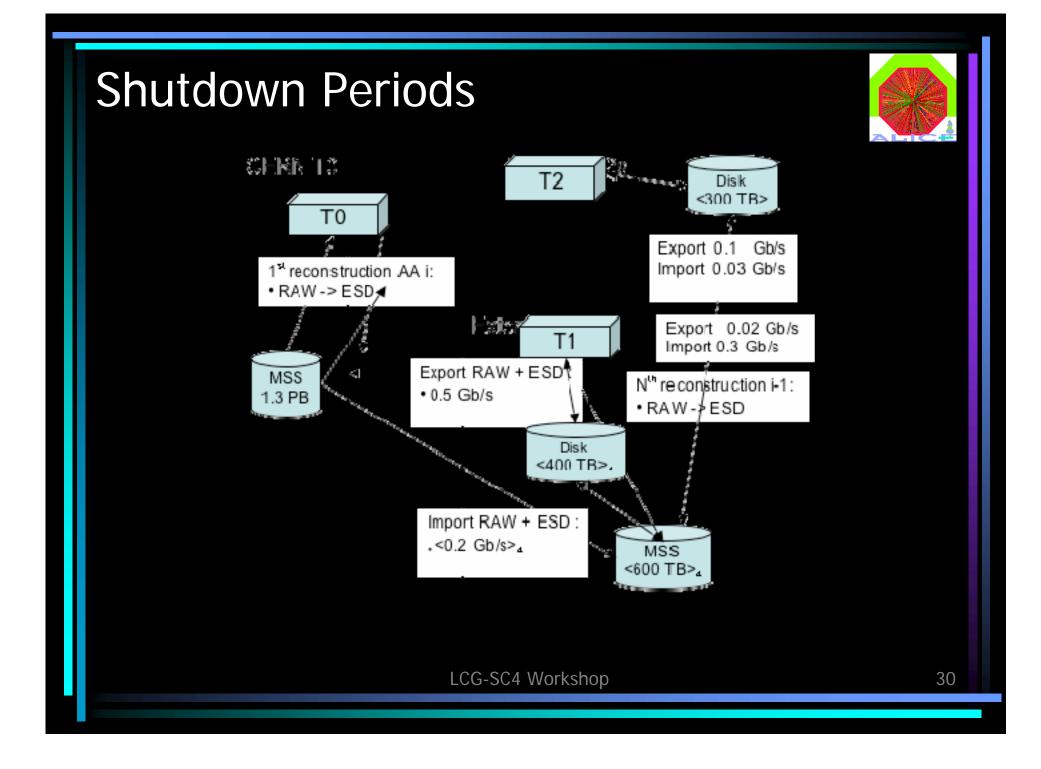
- Service
 - Identification of key TierX $\leftarrow \rightarrow$ TierY transfers
 - "dteam validation"
 - Validation by experiment productions
 - Service improvement
- Experiments: functionality and scalability
 - Full demonstration of experiment production
 - Full chain data taking through to analysis!
 - Expansion of services from production to general users
 - Ramp-up in number of sites; service level
 - Ramp-up in compute / storage / throughput capacity
 - Accompanied by agreed monitoring of actual and historical service level delivery

ALICE SC4 Use Cases

- Not covered so far in Service Challenges:
 - T0 recording to tape (and then out)
 - Reprocessing at T1s
- Calibrations & distribution of calibration data
 - HEPCAL II Use Cases
 - Individual (mini-) productions (if / as allowed)
- Additional services to be included
 - Full VOMS integration
 - PROOF, xrootd, ... (analysis services in general...)


Main points


- Data flow
- Realistic system stress test
- Network stress test
- SC4 Schedule
- Analysis activity


Data Flow

- Not very fancy... always the same
- Distributed Simulation Production
 - Here we stress-test the system with the number of jobs in parallel
- Data back to CERN
- First reconstruction at CERN
 - RAW/ESD Scheduled "push-out" here we do the network test
- Distributed reconstruction
 - Here we stress test the I/O subsystem
- Distributed (batch) analysis
 - "And here comes the proof of the pudding" FCA

Realistic system stress test

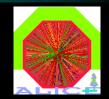

- Number of jobs (up to 3750 until now)
 MC production
- Number of jobs reading/storing files
 - Reconstruction
- Number of files accessed by a job, job splitting, many users
 - Analysis
- Network transfer
 - Push out of files before distributed reconstruction

System Parameters / Services

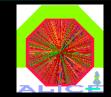
- Simulation / Reconstruction
 - Number of jobs (UI, RB, CE up to 3750 until now)
- Network
 - Push out of files before distributed reconstruction (FTS)
- Analysis
 - Number of users & roles --> VOMS
 - Number of queries: Metadata --> AliEn File Catalogue
 - Batch mode
 - Job splitting (AliEn)
 - Interactive mode
 - Parallel Distributed Analysis (PROOF)
 - Number of files accessed by a job --> xrootd, ...

Network stress test

- T0⇔T1 easy to do, it comes with production
- T1⇔T(x>0) has to be scheduled or folded with analysis
- We plan to use FTS, via jobs in the AliEn TQ or directly
- Expected flow for the first test:


T1 centre	Number of CPUs	Number of reconstruction jobs per day	Incoming data rate [MB/s]	Data volume in local storage [GB/day]
CNAF	396	4000	12	90
CCIN2P3	220	2240	7	50
GridKa	363	3400	11	82
Total	979	9380	30	222
		LCG-SC4 Worksho	ор	33

Analysis

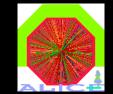

- We have to analyse data while we take them
 - Fast feedback to production
 - Calibration / Alignment
 - Data filtering and search for signals
- We need an operational proof@caf (March 2006) at CERN
 - 1MSI2k
 - 500 today's bi-processors
 - 170pp/s or 1.2PbPb/s

SC3 -> SC4 Schedule

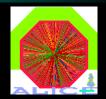
- February 2006
 - Rerun of SC3 disk disk transfers (max 150MB/s X 7 days)
 - Transfers with FTD, either triggered via AliEn jobs or scheduled
 - T0 -> T1 (CCIN2P3, CNAF, Grid.Ka, RAL)
- March 2006
 - T0-T1 "loop-back" tests at 2 x nominal rate (CERN)
 - Run bulk production @ T1,T2 (simulation+reconstruction jobs) and send data back to CERN
 - (We get ready with proof@caf)
- April 2006
 - T0-T1 disk-disk (nominal rates) disk-tape (50-75MB/s)
 - First Push out (T0 -> T1) of simulated data, reconstruction at T1
 - (First tests with proof@caf)
- July 2006
 - T0-T1 disk-tape (nominal rates)
 - T1-T1, T1-T2, T2-T1 and other rates TBD according to CTDRs
 - Second chance to push out the data
 - Reconstruction at CERN and remote centres
- September 2006
 - Scheduled analysis challenge
 - Unscheduled challenge (target T2's?)

SC4 Rates - Scheduled Analysis

- Users
 - Order of 10 at the beginning of SC4
- Input
 - 1.2M Pb-Pb events, 100M p-p events, ESD stored at T1s
- Job rate
 - Can be tuned, according to the availability of resources
- Queries to MetaData Catalogue
 - Time/Query to be evaluated (does not involve LCG services)
- Job splitting
 - Can be done by AliEn according to the query result (destination set for each job)
 - CPU availability is an issue (sub-jobs should not wait too much for delayed executions)
 - Result merging can be done by a separate job
- Network
 - Not an issue


SC4 Rates - Scheduled Analysis

Some (preliminary) numbers
Based on 20 minutes jobs


Centre	ESDvolume in local storæe [TB]	Number of available CPUs	Number of analysis jobs/d a y	Number of passes over the ESD sample/day	Data I/O per CPU/day [GB]	Aggregated I/O from local storge [GB/s]
CERN	26	1000	72,000	16	430	4.8
CCIN2P3	10.5	220	16,000	9	430	2.7

SC4 Rates - Unscheduled Analysis

To be defined

Summary

- Simulation / Reconstruction is likely to work well
- Scheduled Analysis is not much different (but it requires few more services)
 - It includes calibration/alignment
 - If required, it can be run on input data concentrated in one Tx (x=0,1)
- Unscheduled analysis will introduce more complexity, but it will come later

	Site	CPU	Disk	Tape	BW to	
Resources		(MKSI2K)	(TB)	(TB)	CERN/T1	
RESOULCES					(Gb/s)	
	CERN	693	231	170	10	
		(107%)	(109%)	(105%)		
	CCIN2P3	220	105	95	10	
		(100%)	(100%)	(100%)		
	CNAF*	396	187	187	10	
		(100%)	(100%)	(100%)		
	INFN T2*	363	59	106	10	
		(100%)	(100%)	(100%)		
	GridKa	363	59	106	10	
		(87%)	(68%)	(62%)		
	RAL	20	2	2	10	
		(83%)	(20%)	(20%)		
	UK T2 *	121	16	0		
		(100%)	(100%)			
	NDGF*	164	58	101	5	
		(100%)	(100%)	(100%)		
	USA	423	21	25		
		(235%)	(54%)	(100%)		
	FZU Prague	60	14	0	1	
		(100%)	(100%)			
	RDIG	240	10	0	1	
		(48%)	(6%)			
	French T2	130	28	0	0.6	
	0 7 7	(146%)	(184%)			
	GSI	100	30	0	1	
		(100%)	(100%)			
	U. Muenster	132	10	0	1	
		(100%)	(100%)	0		
	Polish T2*	198	7.1	0	0.6	
		(100%)	(100%)	0	0.5	
	Slovakia	25	5	0	0.6	
		(100%)	(100%)	(00		
	Total	4142	913	689		
		(132%)	(105%)	(100%)		
						10
		CG-SC4 \	/Vorksh	ор		40