

Radiation test of Pressure Sensors and Transducers for the LHC machine

Results from test campaigns in TCC 2 2000 - 2001

LHC requirements

Position (@ room temperature)	Purpose	Range (abs)	Accuracy	Quantity
SSS w. jumper	1.8 K phase separator	0100 mbar	0.3 %FS	233
SSS w. jumper	Cold mass	020 bar	0.5 %FS	233
DFB	Helium bath		1.5 %FS	43
QRL s.m.A line C	LHe supply at 4.6 K	04 bar		121
QRL s.m.A line D	Beamscreen return	01.6 bar		121

Market survey \rightarrow 16 interested \rightarrow 12 qualified 2000: 24 transducers tested2001: 17 sensors tested

Pressure measurements will be performed around

- QRL service module A,
- SSS,
- DFB

Poorly protected

Expected dose	Arc	10-20 Gy/y
	DS	20-200 Gy/y
	LSS	?

RADWG Day, 7/12 2001

LHC/ACR/IN, T. Bager

RADWG Day, 7/12 2001

LHC/ACR/IN, T. Bager

On line monitoring of transducers with integrated electronic (campaign 2000)

7

Summary of campaign 2000

Manufacturer	Technology	Failure type	Drift [ppm/Gy]
Rosemount	SGchip,integ.4-20mA,HART	SEE + drift → sat.	
Keller		Drift	+ 60
Kistler	SG chip, integ. 4-20 mA	Drift, dead @190Gy	- 70
Haenni		Drift	Neg.
Baumer	Motal SC integ 4.20 mA	Drift	- 1000
Trafag	Metal 5G, mteg. 4-20 mA	Drift, dead @155Gy	?
Effa	Inductive, integ. 4-20 mA	Drift	- 800
E+H	Capacitive, integ. 4-20 mA	Drift, dead @ 70 Gy	- 60
Druck	Integ. ampli. 0-1 V	Drift→ zero	- 80
Effa	Inductive, remote electronic	No failure	
НВМ	Motal SC ramata algotrania	Re-tested	N/A
Baumer	Metal SG, remote electronic	in 2001	

Irradiation campaign 2001, sensors under test

Manufacturer	Ranges [bar]	Technology	Output
Effa	0.1, 1.6 (4), 20	2 coils, inductance, no oil	56 kHz
Keller	0.1, 1.6 (4), 20	piezo-resist. SG chip,	250 mV
STS	0.1, 1.6 (4), 20	oil separation	100 mV
Baumer	1.6, 4, 20	metal thin film SG, no oil	20 mV
HBM	20	metal SG glued on membrane, no oil	20 mV

All sensors are energised by a **remote electronic** unit.

All membranes in stainless steel.

SG : Strain gauge resistors in wheatstone bridge.

RADWG Day, 7/12 2001 LHC/ACR/IN, T. Bager

Calibration shift of Baumer and Keller sensors

Passive sensors, gain drift with radiation

12

Passive sensors, linearity

Estimated survival time in LHC tunnel, arc

Arc : estimated 10-20 Gy/y

	Transducer or Sensor type		
Pressure range	Integrated electronic	Piezo resistive strain gauge	Metallic strain gauge
100 mbar	< 1 year	< 3 years	N/A
1.6 bar	< 4 years	< 16 years	> 20 years
4 bar	< 4 years	< 16 years	> 20 years
20 bar	< 1.5 year	< 6 years	> 20 years

RADWG Day, 7/12 2001

LHC/ACR/IN, T. Bager

Estimated survival time in LHC tunnel, DS

Dispersion suppressor : estimated 20-200 Gy/y

	Transducer or Sensor type		
Pressure range	Integrated electronic	Piezo resistive strain gauge	Metallic strain gauge
100 mbar	< 1 month	< 0.5 year	N/A
1.6 bar	< 5 months	< 2 years	> 20 years
4 bar	< 5 months	< 2 years	> 20 years
20 bar	< 2 months	< 1 year	> 20 years

RADWG Day, 7/12 2001

LHC/ACR/IN, T. Bager

- A facility allowing on-line monitoring of pressure sensors & transducers has been built and operated in TCC 2.
 - Operation during radiation
 - Remotely controlled valves & vacuum pumps
 - ♦ 10⁻² mbar 20 bar absolute
 - 3 pressure reference instruments
 - Multimeters & scanners and voltage/current supplies

Possible improvement : better information on the spatial distribution of radiation in TCC 2 zone

Conclusion: results 1

Integrated electronic

Effa inductive sensors with remote electronic

Pro's	Con's
Probably OK in rad.	Cable dependant non- linearity
MAŧ	Crossiale causing noise
	Sensors not individually characterised
	Difficult to integrate with rad. tolerant electronic

RADWG Day, 7/12 2001

LHC/ACR/IN, T. Bager

Conclusion: results 2

 Piezo resistive with remote electronic (Keller & STS)

 Metallic resistive with remote electronic (Baumer & HBM)

RADWG Day, 7/12 2001

LHC/ACR/IN, T. Bager

Confirmative test for piezo resistive sensors in TCC 2
100 mbar range test of integrated transducers at lower dose rates in TCC 2

Test of alternative 100 mbar sensors ?

Appendix: working principle of SG sensor

Membrane with 4 strain sensitive resistances moves with pressure.

Bridge un-balance measured by remote electronic using either AC or DC excitation.

Advantages:

•Several high precision conditioners available on the market.

•Sensor characterized on their own. (No in situ calibration)

Appendix: working principle of Effa sensor

Relative inductance of 1 or 2 coils is changed by a membrane that moves with pressure.

Remote electronic detects the change by using either kHz AC excitation.

Advantages:

• High overpressure capability.

