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SMALL-ANGLE CLUSTERING

AGASA data (2001) � � �� � ��� � eV:
5 pairs (doublets)+ 1 triplet within 	
 �
� from � �� ��� �� .

�� excess over chance probability.

HiRes data (2004): no clustering

INTERPRETATION

Dubovsky, Tinyakov and Tkachev (2000):

For rectilinear propagation of particles from the large number of sources, clus-
tering is produced as a random appearance of pairs from a point-like source.

MC simulations can interpret this effect in terms of space density of the sources

� � (Blasi, De Marco 2003; Kachelriess, Semikoz 2004):

� � � � ��� � �� � ��� � �  "! � #



CORRELATIONS WITH AGN (BL Lacs)

Tinyakov and Tkachev (2001):
AGASA and Yakutsk events at �� � ��� � $ % & � &(' � � �� � eV correlate with BL
Lacs (statistical significance )� � � � � ).

These correlations imply weak extragalactic magnetic fields. MHD simulations
by Dolag et al 2003 favour the weak magnetic fields, of order of 0.1 nG in the
filaments and 0.01 nG in voids.

BL Lacs are AGN with jets directed towards the observer. Correlations of UHE
particles with BL Lacs imply acceleration in the direction of jet.



PROPAGATION OF UHECR THROUGH CMB



INTERACTIONS
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PROPAGATION SIGNATURES

Propagation of protons in intergalactic space leaves the imprints on the spectrum in
the form:

GZK cutoff, bump, dip

These signatures might depend on the distribution of sources and way of propagation.

GZK cutoff can be less sharp in case of local overdensity of the sources, or more sharp
in case of their local deficit.



GZK CUTOFF

GZK cutoff is modified by discreteness in source distribution and by source local
overdensity/deficit
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Due to these uncertainties, GZK cutoff, if found, would be difficult to distinguish from
acceleration cutoff



DIP IN THE DIFFUSE SPECTRUM

DEFINITION OF MODIFICATION FACTOR

B � � �C� D E � � �DGFH IE � � �

where DJFH IE � � � includes only adiabatic energy losses (redshift) and D E � � � includes
total energy losses, B �� � � � � or adiabatic, $ 2 $� energy losses, BK K � � � .
Since both D FH IE � � � and D E � � � include factor � � L M , B � � � depends weakly on - N .



DIP IN DIFFUSE SPECTRA

The dotted curve shows B K K , when only adiabatic and pair-production energy losses
are included. The solid and dashed curves include also the pion-production losses.



DIP IN COMPARISON WITH AKENO-AGASA DATA
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DIP IN COMPARISON WITH HIRES DATA
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DIP IN COMPARISON WITH YAKUTSK DATA
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DIP IN COMPARISON WITH AUGER DATA
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DIP AND AGASA-HIRES DISCREPANCY
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AGASA and HiRes spectra calibrated by the dip minimum. The energy shift
needed is O P Q P R P � � 
 � and O ST UVW � �
 	 . Both are allowed by systematic errors.



AGASA-HIRES-AUGER DATA
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AGASA, HiRes and Auger data (left panel) and AGASA, HiRes and Auger data
with energy shift O P Q P R P � � 
 � , O ST UVW � �
 	 and O PF ?V @ � �
 	 ) .



DIP: ROBUSTNESS and CAVEATS

Dip is stable relative to discreteness in source distribution, mode of propagation,
local source overdensity and deficit, acceleration � I XY etc.

Dip is modified by presence of UHE nuclei in primary flux
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Modification factors for He and protons.
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Modification factor for mixed composition
with � S V Z � S � � 
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TRANSITION from EXTRAGALACTIC to GALACTIC CR
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The transition starts at � [ � �� � �� \ eV. It is determined by fundamental energy

� V ] � 	 � � �� \ eV, where pair-production and adiabatic energy losses become
equal. Observed transition must occur at smaller energy � ^ � [ , and thus it
coincides with position of the second knee.



TRANSITION at the ANKLE

Best fit of data with help of galactic+extragalactic components
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TRANSITION at the ANKLE
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TRANSITION at the ANKLE

Best fit of data with help of galactic+extragalactic components
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Landau theorem

A model with more than three parameters can explain any experimental data.



TRANSITION at the ANKLE

Best fit of data with help of galactic+extragalactic components
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AGN MODEL

Acceleration

Pinch mecanism in jets: B.A.Trubnikov et al. 1990

ê NKë � � �Cì � � L M a - N � �+ í � � 	
 î �

� I XY ï �� � �ñð ð $ % 

We assume: � I XY � �� � ��ð � eV.

generation spectrum for quasi-rectilinear propagation:

ê ?VH � � �óò � � ðN ô c � N & � [� � ðõ öN ô c � N � � [ (1)

emissivity: ` ÷ � � 
 �� � �ùø ú erg/yr Mpc #

source luminosity: û E � � 
 î� � �ø # erg/s for � � � �� � �ü� � Mpc� # .



Comparison of calculated spectra with data



TRANSITION from GALACTIC to EXTRAGALACTIC CR
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If transition from galactic to extragalactic CR occurs at ankle, � ýÿþ �� � �� � eV, then
there are two problems:
1. UHE iron nuclei start to disappear from Galaxy at � �V þ ) 
 �� � �� ú eV. How the
gap between �� � �� ö eV and �� � �� � eV is filled?
2. UHE protons start to disappear from Galaxy at � E þ 	
 � � � �� � eV. Then how
they appear again in the Akeno experiment (fraction � ï � � � ) at � ï �� � � � ö eV?



TRANSITION from GALACTIC to EXTRAGALACTIC CR in AGN MODEL



DOES UHECR PROBLEM STILL EXIST?

1. AGASA EXCESS?

� Auger does not observe it.

� There is no discrepancy between AGASA and HiRes after energy calibra-
tion by dip.

� AGASA excess may have statistical origin.

� If AGASA excess is real it needs another CR component, most probably
connected with new physics.

2. NO SOURCES ARE SEEN IN DIRECTIONS OF PARTICLES
WITH � � �� � �
	 � eV.

e.g. for golden Fly’s Eye event with � � �� � � ð ÷ eV : � X � �� 	 � Mpc.



SOLUTIONS WITH NEW PHYSICS
motivated by AGASA excess at � � �� � � ð ÷ eV

� SUPERHEAVY DARK MATTER ( 
 1 hadrons)

� � ï � �� ð � h � a�� � ï � �� ÷ ���

No radically new physics involved, fits the data

� RESONANT NEUTRINOS (Z-BURSTS)
�+ �� � / 1 9 ÷ 1 d ô� � 67 8

Excluded: too high flux of neutrinos required

� TOPOLOGICAL DEFECTS
Reliable physics, weak GZK cutoff, disfavoured.

� NEW PARTICLES
Strongly interacting neutrino, light (quasi)stable hadron
(e.g. glueballino �� � ), mirror neutrons: not excluded.

� LORENTZ INVARIANCE VIOLATION
Most radical proposal: fits the data.



CONCLUSIONS

1. Extragalactic UHE protons have propagation signatures in the form of GZK
cutoff and dip.

� Presence of GZK cutoff is questioned by AGASA data, though it can have
the statistical origin.

� Dip is confirmed by model-independent analysis with good agreement with
spectra shapes measured by AGASA, HiRes, Fly’s Eye, Yakutsk detectors.

� This analysis implies transition from extragalactic to galactic CR at � [ ì�� � �� \ eV, i.e. at position of the second knee. � [ is determined by funda-
mental energy of proton interaction with CMB � V ] � 	� � �� \ eV.

� Transition to the proton component at � ì �� � �<� \ eV is confirmed by
measurement of mass composition by HiRes, HiRes-MIA, Yakutsk, it does
not contradict to Haverah Park, and it contradicts to Akeno and Fly’s Eye
data.

� Transition at the ankle remains an alternative.



2. In case of weak magnetic field � ^ � � � � nG quasi-rectilinear propagation
of protons with � ï �� � �� � eV explains clustering and correlations with AGN.

3. The jet AGN model with the pinch acceleration explains � I XY � �� � �ùð � eV
and - N � 	
 î , provides the smooth transition to the galactic CR and predicts the
galactic iron spectrum at � ^ �� � ��� \ eV in agreement with the Hall diffusion.
It explains small-angle clustering and correlations with BL Lacs.


