ep interactions at HERA and beyond: modelling higher orders and the problem of NLC

H. Jung (DESY)

- What is HERA doing in Skopelos ?
- *ep* interactions: where is the problem ?
 - highest energies:
 - problem of asymptotia
 - from inclusive to final states:
 - problem of exclusivity....
 - simulations, even at NLO
 - need of fully unintegrated pdfs
- first steps:
 - unintegrated pdfs
 - even for LHC
- conclusions

What is HERA doing in Skopolos ?

electron proton collider HERA $\sqrt{s} = 320 \text{ GeV}$

- Electrons: 27.6 GeV
- Protons: 920 GeV
- Physics Program:
 - structure functions, parton density functions
 - jets
 - heavy quarks
 - diffraction in QCD
 - high energy behavior of QCD
 - precision machine for QCD, like LEP was for electroweak...
- planned to run until 2007

A typical ep event at HERA

$$\sqrt{s} \sim 318 \text{ GeV} \rightarrow x \sim 7. \ 10^{-5} \text{ at } Q^2 = 4 \text{ GeV}^2$$

Where is the problem ?

QPM process total x-section

BGF $\mathcal{O}(\alpha_s)$ process $\mathcal{O}(\alpha_s^2)$ processheavy quarks (charm & bottom)2-jet3-jet

Where is the problem ?

Where is the problem: hadronic final state

Where is the problem: hadronic final state

processes of $\mathcal{O} > \alpha_s^3$ have not yet been calculated ... interesting to go closer to outgoing proton remnant forward jets !!!

Where is the problem: hadronic final state

processes of $\mathcal{O} > \alpha_s^2$ have not yet been calculated ... interesting to go closer to outgoing proton remnant forward jets !!!

Approximations to higher orders ...

gluon bremsstrahlung x z k $\sim \frac{1}{k^2} \left(\frac{1}{z} + \cdots \right)$ d waves х collinear approximation 'small x' approximation ${}^{1/}E$ collinear factorization k, factorization ***** 8888 arrow a ρ_t

DGLAP

 collinear singularities factorized in pdf

evolution in
$$Q^2 \sim k^2$$
, or k_t^2 or ?
 $\sigma = \sigma_0 \int \frac{dz}{z} C^a(\frac{x}{z}) f_a(z, Q^2)$

BFKL

- k_t dependent pdf → unintegrated pdf
- evolution in x

$$\sigma = \int \frac{dz}{z} d^2 k_t \hat{\sigma}(\frac{x}{z}, k_t) \mathcal{F}(z, k_t)$$

The problem of asymptotia

DGLAP is great at highest $Q^2 \to \infty$

for inclusive quantities

BUT has problems

- heavy quarks
- jets
- particle spectra
- small x processes

BFKL is great at small $x \to 0$ or highest $W \to \infty$ for **inclusive quantities**

BUT has problems

- finite x
- NL corrections
- final states

BUT asymptotia still far away even for LHC or cosmic energies

From asymptotia to total x-section

- Description of inclusive processes:
 - DGLAP for high Q²
 - BFKL for small x
- matched DGLAP/BFKL for F₂ (R. Thorne, Kimber, Martin, Stasto, etc.)
 - resummed gives better fit
 - not a big effect at HERA !!!
- where is asymptotia ?

From asymptotia to exclusivity

- Description of inclusive processes:
 - DGLAP for high Q²
 - BFKL for small x
- matched DGLAP/BFKL for F₂ (R. Thorne, Kimber, Martin, Stasto, etc.)
 - resummed gives better fit
 - not a big effect at HERA !!!
- where is asymptotia ?

Building up the final states

- Monte Carlo event generators
- fixed order parton level calculations at NLO

DGLAP MC event generators

- use LO matrix elements
 - for light quarks, cutoffs are needed
- apply initial and final state parton showers
 - matching of cutoff in ME with parton showers
- apply hadronization
- obtain cross sections fully differential in any observable
- BUT:
 - only in LO (attempts to include NLO: Collins et al, <u>MC@NLO</u>, etc)

DGLAP equation

• differential form
$$q \frac{\partial}{\partial q} f(x,q) = \int \frac{dz}{z} \frac{\alpha_s}{2\pi} P_+(z) f\left(\frac{x}{z},q\right)$$

- modified differential form using "Sudakov form factor" $\Delta_s(q_0, q) = \exp\left(-\bar{\alpha}_s \int \frac{dz}{z} \int_{q_0}^q \frac{dq'}{q'} \tilde{P}(z)\right)$ $q \frac{\partial}{\partial q} \frac{f(x, q)}{\Delta_s(q, q_0)} = \int \frac{dz}{z} \frac{\alpha_s}{2\pi} \frac{\tilde{P}(z)}{\Delta_s(q, q_0)} f\left(\frac{x}{z}, q\right)$
- integral form

$$f(x,q) = f_0(x,q)\Delta_s(q,q_0) + \int \frac{dz}{z} \int \frac{dq'}{q'} \cdot \Delta_s(q',q_0)\tilde{P}(z)f\left(\frac{x}{z},q\right)$$

no-branching probability form q₀ to q

Initial state parton evolution

- for fixed x and Q² chains with different branchings contribute
- iterative procedure to calculate parton densities
 - nothing said about parton emissions in DGLAP !!!!!
 - additional assumptions needed for spacelike parton showering

Parton Showers for the initial state

spacelike parton shower evolution

- starting from hadron (fwd evolution) or from hard scattering (bwd evolution)
- select q_1 from Sudakov form factor
- select z_1 from splitting function

- select q₂ from Sudakov form factor
- select z_2 from splitting function
- stop evolution if $q_2 < q_0$

Parton Showers for the final state

timelike parton shower evolution

- starting with hard scattering
- select q_1 from Sudakov form factor
- select z_1 from splitting function

• select q_2 from Sudakov form factor

- select z_2 from splitting function
- stop evolution if $q_2 < q_0$

Matching of ME - PS

Approximation to higher orders..... using initial and final state radiation ٩ ĝ, according to DGLAP ME sets maximum scale for parton a showers anno check sensitivity on particular choice $p_t < \hat{p}_t$ 0 $\mathbf{p}_t < \hat{\mathbf{p}}_t$ Same (1/N)dn/dη(K₀)(MC) 10 ann 8 6 ptcut = 2.5 GeV--- ptcut = 3 GeV \cdots ptcut = 4 GeV ----- ptcut = 5 GeV 0 0 $\eta(K_0)$

Di-jet rates: LO + PS ?

- (2+remnant) jets in DIS for $Q^2 > 5 \text{ GeV}^2$, $p_t^{\text{jets}} > 5 \text{ GeV}$
- $\mathcal{O}(\alpha_s)$ processes not enough
 - need higher order contributions

resolved virtual photons and higher orders

- take structure of the photon from QED ۵
 - pointlike splitting for virtuial photons 13
 - approximation to higher order QCD processes 0 $\mu^2 > Q^2$
 - BUT: when can photons be resolved: 6

Di-jet rates: improving with res. photons

- (2+remnant) jets in DIS for $Q^2 > 5 \text{ GeV}^2$, $p_t^{\text{jets}} > 5 \text{ GeV}$
- resolved virtual photon contributions describe data (like NLO...)

From LO to NLO ...

LO NLO not included α_s^1 NLO for F_2 : $O(\alpha_s)$ 8 $| \sqrt{\alpha_s^0}$ F_2 α_s¹ di-jet NLO for dijets: $O(\alpha_s^2)$ 8 α_{s}^{3} 3-jet | | NLO for 3-jets: $O(\alpha_s^3)$ fuund ۵ NOTE: NLO for dijets is **NOT** NNLO for F_2

Di-jet rates: NLO calculations

- (2+remnant) jets in DIS for $Q^2 > 5 \text{ GeV}^2$, $p_t^{\text{jets}} > 5 \text{ GeV}$
- NLO calculations are ok, if $p_{t1} \neq p_{t2}$
- similar to resolved virtual photons

Di-jet rates: resolved photons (reminder)

- (2+remnant) jets in DIS for $Q^2 > 5 \text{ GeV}^2$, $p_t^{\text{jets}} > 5 \text{ GeV}$
- resolved virtual photon contributions describe data (like NLO...)

Problems in NLO

- asymmetric pt cuts: $p_{t1} \neq p_{t2}$ needed for cancellation of real and virtual emissions....
- Ioose most of the data...
- unphysical behavior...

Problems in NLO

Why all these problems ?

Collinear approach: incoming/outgoing partons are on mass shell

 $(+q)^2 = q'^2$, $-Q^2 + x y s = 0 \rightarrow x = Q^2/(ys)$

BUT final state radiation:

 $(+q)^2 = q'^2$, $-Q^2 + x y s = m^2 \rightarrow x = (Q^2 + m^2)/(ys)$

• **AND** initial state radiation:

 $(+q)^2 = q'^2$, $-Q^2 + xys + q^2 = 0 \rightarrow x = (Q^2 - q^2)/(ys)$

- Collinear approach: q'² = q² = 0, order by order
- Well known.... since years....

H. Jung, CCD at cML Qgi Corrections... better treatment of kinematics...

Attempts to parton shower NLO

 Attempts to include parton showers in NLO: state parton shower beyond LO[°], J.C. Collins and X. Zu, JHEP

0503:059, 2005, hep-ph/0411332. "Monte-Carlo event generators at NLO", J.C. Collins, Phys.Rev.D*65*, 094016, hep-ph/0110113.

- due to virtualities and k_t's after PS, long. momentum factions x_i no longer consistent with NLO formulae
- complicated subtractions in gluon channel
- very complicated in quark channel
- needs reformulation for every order

- Need to define new parton densities according to showering scheme
- precisie prescription to transform Msbar to PS scheme (BUT dependent on PS scheme,i.e. Sjostrand scheme or Herwig scheme)

The need for unintegrated PDFs

References

- "Initial state parton shower beyond LO", J.C. Collins and X. Zu, JHEP 0503:059, 2005, hep-ph/0411332.
- "Monte-Carlo event generators at NLO", J.C. Collins, Phys.Rev.D65, 094016, hep-ph/0110113.
- "Universality of soft and collinear factors in hard-scattering factorization", J.C. Collins and A. Metz, Phys.Rev.Lett.93:252001, hep-ph/0408249.
- "Un-integrated parton distributions and inclusive jet production at HERA", G. Watt, A.D. Martin and M.G. Ryskin, Eur.Phys.J.C31:73-89, hep-ph/0306169.
- "Back-to-back jets in QCD", J.C. Collins and D.E. Soper, Nucl.Phys.B**193**:381,1981, Erratum-ibid.B**213**:545,1983.
- "Sudakov form-factors", J.C. Collins, Adv.Ser.Direct.High Energy Phys.5:573-614,1989, hep-ph/0312336.

Do HERA data matter ?

Need for uPDFs

 $p_{Tq\bar{q}}$

1/N dN/dp_t^{cc} (1/GeV) 0 0 0 01 $1/N dN/dx_{\gamma}$ parton model parton model -1 -1 10 -2 -2 10 -3 -3 10 -4 -4 (a) (b) 10 10 -5 -5 10 10 10 15 20 0.2 0.4 0.6 0.8 5 0 0 ptcc (GeV) X

parton kinematics

Need for uPDFs

 $p_{Tq\bar{q}}$

J. Collins, H. Jung

- parton kinematics
- uPDFs

Need for uPDFs

$p_{Tq\bar{q}}$

- parton kinematics
- uPDFs
- full kinematics

J. Collins, H. Jung

Need for double uPDFs

m_{rem} (GeV)

J. Collins, H. Jung

-1

Need for double uPDFs

Need for fully uPDFs

- full kinematics can only be described by fully (double) uPDFs
- dependence on k_t^2 and k^2
- reformulate pQCD methods in terms of fully uPDFs
- extension of k, factorisation
- Advantages:
 - kinematics correct already at LO
 - NLO corrections much smaller (BFKL example: 70 % from kinematics)
 - no need for separate methods (resummation or the CCS (Collins Soper Sterman))
 - unified treatment of ME calcs and MC generators

Different steps of approximations

- fully uPDFs
- uPDFs (*k*, factorisation)
- integrated PDFs + parton showers
- integrated PDFs + fixed order calculations in LO and NLO

k_t-factorization and CCFM

- kt-factorisation: treat transverse momentum of incoming gluon ...
 - allow $k_t \ge \mu_f$
- Ciafaloni Catani Fiorani Marchesini : equations treat explicitly gluon emissions
 - according to color coherence ... angular ordering
 - angular ordering includes DGLAP and BFKL as limits...

H. Jung, QCD at cosmic energies, Skopolos, 2005

k_t-factorization and collinear NLO

off-shell matrix elements (kt – factorization) includes most NLO corrections:

even soft kt region is properly treated (not the case in part.level NLO calc)
 in addition contributions to all orders are included

Hadronic final state: Di-jet rates

- (2+remnant) jets in DIS for $Q^2 > 5 \text{ GeV}^2$, $p_t^{\text{jets}} > 5 \text{ GeV}$
- $\mathcal{O}(\alpha_s)$ processes not enough
 - needs $\mathcal{O}(\alpha_s^2)$ or resolved virtual photon contributions
 - kt-factorisation with CCFM uPDFs is as good as NLO

Hadronic final state: Energy flow

- Et flow in DIS at small x and forward angle (p-direction):
- → $\mathcal{O}(\alpha_s)$ processes not enough
- → even DGLAP parton showers do not help

- need higher order contributions...
- k_t factorisation with CCFM very good !!!!!

Charm production

forward jet production and diffraction

DIS and forward jet:

$$1.7 < \eta_{jet} < 2.8$$

 $x_{jet} > 0.035$
 $0.5 < \frac{p_{t\ jet}^2}{Q^2} < 5$
 $\sigma(\mathrm{fwd\ jet})/\sigma(\mathrm{DIS}) \sim 1\%$

forward jet production and diffraction

DIS and forward jet:

$$1.7 < \eta_{jet} < 2.8$$

 $x_{jet} > 0.035$
 $0.5 < \frac{p_{t\ jet}^2}{Q^2} < 5$
 $\sigma(\text{fwd\ jet})/\sigma(\text{DIS}) \sim 1\%$

• in diffraction: forward jet close to rapidity gap $\sigma(\text{diff dijet})/\sigma(\text{DIS}) \sim 1\%$

 understand radiation close to proton and radiation close to rapidity gap

 is DGLAP parton radiation enough ? or is BFKL or CCFM needed ?

forward jet production

 CASCADE (CCFM) evolution closer to data

forward jet production

DIS and forward jet: $1.7 < \eta_{jet} < 2.8$ $x_{jet} > 0.035$ $0.5 < \frac{p_{t\ jet}^2}{Q^2} < 5$

forward jet production

• DIS and forward jet: $1.7 < \eta_{jet} < 2.8$ $x_{jet} > 0.035$ $0.5 < \frac{p_{t\ jet}^2}{Q^2} < 5$

resolved virtual photon picture and CDM best !!!

 details of parton cascade still not well understood ...

Bottom at TeVatron

H. Jung, QCD at cosmic energies, Skopolos, 2005

charm and beauty at the LHC

MNR (massive NLO) – FONLL (matched NLL) – CASCADE (uPDF)

CASCADE: H.Jung and G.P.Salam, Eur.Phys.J. **C19** (2001) 351

M.Cacciari, H.Jung, K.Peters, A.Dainese

Advantage of u-pdfs

Advantage of uPDFs

$$A(x, k_t, \bar{q}) = A_0(x, k_t) \Delta_s(\bar{q}, Q_0) + \int \frac{dx}{2} \frac{d^2 q}{q^2} \Delta_s(\bar{q}, zq) \cdot \tilde{P}(z, ...) A\left(\frac{x}{z}, k'_t, q\right)$$

Advantage of uPDF:
• initial condition clearly seen in small k, region
• even at large scales q
$$A(x, k_t, \bar{q}) = A_0(x, k_t) \Delta_s(\bar{q}, Q_0) + \int \frac{dx}{z} \frac{d^2 q}{q^2} \Delta_s(\bar{q}, zq) \cdot \tilde{P}(z, ...) A\left(\frac{x}{z}, k'_t, q\right)$$

 k_{\perp}^2 (GeV²)

х

 $k_{\perp}^2 = 20 \ GeV^2$

x=0.1

Non-linear effects in uPDFs

Advantage of uPDF:

- non-linear effects come at $k_t < k_s$
- onset of non-linear effects clearly visible
- BUT:

in region where non-linear are large, expect breaking of kt-factorisation

Non-linear effects at LHC

Nonlinear evolution equation for unintegrated gluon distribution.

$$f(x,k^2) = \tilde{f}^{(0)}(x,k^2) + K^1 \otimes f - K^2 \otimes f^2$$

 $\hat{f}^{(0)}(x,k^2) \rightarrow \text{input}$

$$K^1 \otimes f \to \mathrm{BFKL}$$

$$K^{2} \otimes f^{2} = \left(1 - k^{2} \frac{d}{dk^{2}}\right)^{2} \overset{k^{2}}{R^{2}} \times \int_{x}^{1} \frac{dz}{z} \left[\int_{k^{2}}^{\infty} \frac{dk'^{2}}{k'^{4}} \alpha_{s}(k'^{2}) ln\left(\frac{k'^{2}}{k^{2}}\right) f(z,k'^{2})\right]^{2}$$

Bottom suppression due to non-linear effects in BK

Significant effects...
up to factor of 2 in hot spot scenario
factorization still ok ?

Conclusions

- challenge to describe final states in detail
- simple collinear factorisation approach can lead to wrong results even at NLO for special differential observables
 - proper treatment of kinematics very important (as usual)
- need for fully unintegrated PDFs
 - needed for consistent calculations
 - theoretical work progressing
 - k_t effects important for proper simulation of hadronic final state
 - k_t factorisation with CCFM gives results consistent with NLO + resumm., only much simpler
- detailed understanding of parton cascade is still challenging
 - small x effects saturation important for proper xsection estimates
- most of effects can be studied and tested at HERA
- important for extrapolation to cosmic energies but also for LHC