Is Nothing Sacred?

Lorentz Symmetry Breaking and High-Energy Cosmic Rays

C.P. Burgess

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

Kinematics and the GZK Cutoff

- Lorentz-violating physics can radically change the inferences about the nature and sources of cosmic rays.
 - Failure of boost invariance makes high-energy hadrons interact differently with the CMB than they would in their CM frame.
 - Appropriate choices of dispersion relation for pions, protons and photons can change the threshhold for reactions like p $\gamma \rightarrow$ p π
 - New energy-loss process become possible, like $p \to p \ \gamma$ or $p \to p \ e^+e^- \ x$
- Can such effects occur? Are they plausible?

31/10/2005

Why Break Lorentz Invariance?

- Lorentz invariance is well tested and successful. Is it fundamental?
 - Baryon number conservation is well tested at accessible energies, but this does *not* make us expect short-distance physics to conserve it.
 - Baryon number is an accidental symmetry of the Standard Model even in a GUT which breaks it.

$$L_{eff} = \frac{g^2}{M^2} \varepsilon_{abc} \left(D_i^a \gamma_L D_j^b \right) \left(D_k^c \gamma_L E \right) + c.c.$$

31/10/2005

Lorentz Violation

Is Lorentz Symmetry Emergent?

• Quantum Gravity: Could Lorentz invariance be emergent at low energies in the same way?

- Suppose spacetime is latticelike at very small distances.
- Rotational invariance *can* emerge at low energy from lattice symmetries.
- Boosts are much more difficult to achieve in this way.

$$L_{eff,1} = M\left(\overline{\psi}\gamma_0\psi\right)$$

$$L_{eff,2} = \overline{\psi} \gamma^0 \partial_0 \psi + c \,\overline{\psi} \,\overline{\gamma} \cdot \nabla \,\psi$$

 $c \sim \log M$

31/10/2005

Lorentz Violation

Guidance from String Theory

 String theory does not seem to break Lorentz invariance at short distances in a latticelike way.

Guidance from String Theory

 String theory does not seem to break Lorentz invariance at short distances in a latticelike way.

• String theory contains branes as well as strings.

Guidance from String Theory

• String theory does not seem to break Lorentz invariance at short distances in a latticelike way.

(Search and a state of the second second

- String theory contains branes as well as strings.
- All known particles (except for gravity) can be trapped on a brane at low energies.
 'The Brane World'

31/10/2005

Pandora's Box, opened

the latter by the design of the state of the second second second second second second second second second se

• Preferred-frame effects are *generic*, in presence of extra-dimensional objects.

- Physics *can* depend on our absolute motion.
- Gravitons can take short-cuts through the bulk extra dimensions.*
 - Maximum speed can depend on particle species.

Gravitational Shortcuts?

- 'Brane' and 'bulk' particles have different speeds because bulk particles can take shortcuts.
- *Not So Fast:* At low energies bulk particles are not localized in the extra dimensions due to uncertainty principle. Nevertheless, Lorentz-violating effects can arise...

$$\Delta x \le r \Longrightarrow E \ge 1/r$$

31/10/2005

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

Effective Field Theory

- Suppose another symmetry (like CPT) eliminates effective Lorentz-violating terms proportional to *M*.
- At low energies modifications of kinetic terms dominate: different particles 'see' different metrics.
 - Multiple metrics break Lorentz invariance....

$$L = \frac{1}{2} \sqrt{g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{1}{2} \sqrt{\gamma} \gamma^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi + k \sqrt{g} g^{\mu\nu} g^{\lambda\rho} \partial_{\mu} \partial_{\lambda} \phi \partial_{\nu} \partial_{\rho} \phi + \dots$$

If rotation invariance is not broken, then

$$g_{\mu\nu} = \gamma_{\mu\nu} + \mathcal{E} u_{\mu} u_{\nu}$$

31/10/2005

Implications for Dispersion Relations

$$E^2 = (mc^2)^2 + p^2c^2 + bp^4 + \cdots$$

- From the effective action we find
 - Leading terms imply:
 - Next-order terms mply:
- $c^{2} 1 \sim O(\varepsilon)$ $b \sim O(k \varepsilon^{2})$

Lorentz Violation

And if from the Brane World....

n an an an an an Arabita ann an Arabita an an Arabita ann an Arabita an Arabita an Arabita ann an Arabita ann a

- Integrate out KK modes to obtain 4D effective theory.
- At tree level only gravity sees a different metric.
- Calculations give

 $g_{\mu\nu} = \gamma_{\mu\nu} + \varepsilon u_{\mu} u_{\nu}$ with $\varepsilon \sim (M r)^{-1}$ $L = L_{bulk} + L_{branes}$ $L_{bulk} = L_0 + L_1 + \cdots$ $L_0 = \frac{M_p^2}{2} g^{\mu\nu} R_{\mu\nu}$ $L_1 = c_1 \frac{M_p^2}{2} \varepsilon u^{\mu} u^{\nu} R_{\mu\nu}$

And if from the Brane World....

 At one-loop level other particles acquire Lorentz-violating interactions.

• Self-energy graphs generate changes to maximum speed and dispersion of ordinary particles.

31/10/2005

Implications for Dispersion Relations

$$E^{2} = (mc^{2})^{2} + p^{2}c^{2} + bp^{4} + \cdots$$

- For the brane world:
 - For gravity: $c^2 1 \sim \varepsilon$, $b \sim \varepsilon^2$
 - For other particles: $c^2 1 \sim \epsilon m^2 / (8\pi M_p)^2$, $b \sim \epsilon^2 / (8\pi M_p)^2$

Terrestrial Constraints

• Very strong constraints exist for Lorentzbreaking terms for nongravitational particles.

- Eg: Limits on variations in atomic spectra with Earth's motion:
 - $H_{eff} = E (v \cdot s)$
 - $|c_{\gamma}-c_p| < 10^{-22}$

31/10/2005

Lorentz Violation

In Brane World Case:

• No tree-level effect is predicted for brane bound particles, for which almost all of the bounds apply.

- For almost all of parameter space the small contributions due to loops are smaller than the constraints. (Some come interestingly close!)
- Comparatively weak bounds on c_g from tests of General Relativity:
 - Binary pulsar: $|c_{\gamma} c_g| = O(\epsilon) < 10^{-2}$
 - Terrestrial experiments: $|c_{\gamma} c_{g}| = O(\epsilon) < 10^{-3}$
 - Solar/Planetary Spins: $|c_{\gamma} c_g| = O(\epsilon) < 10^{-6}$

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

Enter Cosmic Rays

- Cosmic rays provide very strong limits on violations of Lorentz invariance.
 - Very high-energy rays are seen: $E \sim 10^{11}$ GeV.
 - Lorentz-violating kinematics allow qualitatively new energy-loss processes:
 - Cerenkov radiation if $c_1 > c_2$
 - Photon decays, like γ → e⁺e⁻, which normally are forbidden by energy-momentum conservation, become possible if E > E_{min}

Why Are New Processes Possible?

 Processes like Cerenkov radiation, or photon dissociation are usually forbidden by the interplay of energy and momentum conservation.

Why Are New Processes Possible?

 Processes like Cerenkov radiation, or photon dissociation are usually forbidden by the interplay of energy and momentum conservation.

• Modified dispersion relations can allow both to be satisfied.

Cosmic Ray Constraints

• Assuming that energetic (10¹¹ GeV) cosmic rays go further than a metre:

- $p \rightarrow p \gamma, p \rightarrow p g$ forbidden
- $c_q c_\gamma < 10^{-22}$
- $b_q b_{\gamma} < (10^{22} \text{ GeV})^{-2}$
- Assuming that very energetic (10¹¹ GeV) cosmic rays come *at least* as far as from the galactic center implies:
 - $c_q c_g < 10^{-15}$
 - $b_q b_g < (10^{22} \text{ GeV})^{-2}$

Moore & Nelson, Gagnon & Moore

- Motivations:
 - Why Bother? An opinionated survey...
- Implications:
 - Effective Field Theories
 - Implications of Nonstandard Kinematics
- High-Energy Cosmic Rays:
 - Constraints
 - Utility?
- Summary

Summary

- Preferred frame (PF) effects are possible, but not easy, to obtain in a phenomenologically interesting way.
 - Hard to make Lorentz violation decouple from low energies.
 - This undermines most quantum-gravity proposals
 - Deserves serious consideration within brane-world scenarios, where it suggests PF effects may naturally hide in the gravity sector.
- PF effects are very strongly constrained.
 - This is even true for many gravitational effects.
- Potential implications for high-energy cosmic rays.
 - So far CRs teach us more about PF effects than vice versa.

Summary

• Preferred frame (PF) effects are possible, but not easy, to obtain in a phenomenologically interesting way.

- Hard to make Lorentz violation decouple from low energies.
 - This undermines most quantum-gravity proposals
 - Deserves serious consideration within brane-world scenarios, where it suggests PF effects may naturally hide in the gravity sector.
- PF effects are very strongly constrained.

- This is even true for many gravitational effects.
- Potential implications for high-energy cosmic rays.
 - So far CRs teach us more about PF effects than vice versa.

Summary

• Preferred frame (PF) effects are possible, but not easy, to obtain in a phenomenologically interesting way.

- Hard to make Lorentz violation decouple from low energies.
 - This undermines most quantum-gravity proposals
 - Deserves serious consideration within brane-world scenarios, where it suggests PF effects may naturally hide in the gravity sector.
- PF effects are very strongly constrained.

- This is even true for many gravitational effects.
- Potential implications for high-energy cosmic rays.
 - So far CRs teach us more about PF effects than vice versa.

How Not to Think About It

- 'Brane' and 'bulk' particles have different speeds because bulk particles can take shortcuts.
- *Not So Fast:* At low energies bulk particles are not localized in the extra dimensions due to uncertainty principle.

$$\Delta x \le r \Longrightarrow E \ge 1/r$$

31/10/2005

Effective Field Theory

- At low energies the kinetic terms for different particles 'see' different metrics.
 - Multiple metrics break Lorentz invariance....

$$L = \frac{1}{2} \sqrt{\gamma} \gamma^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi$$
$$\gamma^{\mu\nu} = G^{\mu\nu} (x, y = y_b)$$

 $\chi = \chi(x)$ on brane at $y = y_b$

$$\Phi(x, y) = \sum_{k} \phi_{k}(x) u_{k}(y)$$

$$L = \frac{1}{2} \int d^{n} y \sqrt{G} G^{MN} \partial_{M} \Phi \partial_{N} \Phi$$

$$= \frac{1}{2} \sqrt{g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \cdots$$

$$\sqrt{g} g^{\mu\nu}(x) = \int d^{n} y \sqrt{G} G^{\mu\nu}(x, y) u_{0}(y) u_{0}(y)$$

 $\phi(x)$ zero mode of $\Phi = \Phi(x, y)$

31/10/2005

Lorentz Violation

From gravity to observed particles

- Quantum effects can carry the news of the preferred frame from gravity to brane particles.
 - For $c_g > c_p$ this can give the best bounds.

- Can compute the 1-loop prediction for changes to dispersion relation for fermions and gauge bosons:
 - Replace $g_{\mu\nu}$ by $g_{\mu\nu} + \epsilon u_{\mu} u_{\nu}$ in graviton propagator
 - Can approximately sum KK graviton modes for energies E > 1/R.

Lorentz Violation

4D graviton loop:

$$\delta c^2 \cong \left(\frac{\Lambda}{8\pi M_p}\right)^2, \quad b \cong \left(\frac{1}{8\pi M_p}\right)^2$$

- Loop integrals diverge in the ultraviolet
 - Contributions to c² are quadratically divergent
 - Contributions to *b* are logarithmically divergent
- Power divergences indicate sensitivity to UV.
 - Care required to interpret this (more about this later)
- In dimensional regularization Λ becomes m and divergences describe logarithmic running of effective couplings.

4D graviton results

219 Reveal of the second se

- δc² largest for most massive particles:
 - Largest for W,Z bosons, Higgs and t-quarks.
 - Unobservably small.
- *b* same for all fermions
 - Negative for all ε.
 - $b_f > b_\gamma$
- $b_p b_\gamma$ bounds $\varepsilon < 10^{-3}$

$$c_f^2 - 1 = -\frac{56\varepsilon}{3} \left(\frac{m_f}{8\pi M_p}\right)^2 \log\left(\frac{M^2}{m_f^2}\right)$$
$$b_f = -\frac{12\varepsilon^2}{(8\pi M_p)^2} \log\left(\frac{M^2}{m_f^2}\right)$$

$$c_{\gamma}^{2} - 1 = 0$$

$$b_{\gamma} = -\frac{304\varepsilon^{2}}{15(8\pi M_{p})^{2}} \log\left(\frac{M^{2}}{\mu^{2}}\right)$$

4D graviton revisited

- Strong mass dependence implies higher loops can compete for δc^2 .
 - $\delta c_{\gamma}^2 \sim (\alpha/4\pi) \, \delta c_t^2$
- Protons are not elementary at scales larger than 1 GeV.
 - $\delta c_p^2 \sim max(\delta c_g^2, \delta c_q^2)$
- Predictions for *b* not strongly affected.
- Cutoffs miss couplings!

Graviton KK modes

- For scales larger than 1/R, bulk KK modes can also communicate preferred-frame effects within loops.
 - Summing KK modes is same as using higher-D graviton.
 - For short-wavelength gravitons background is essentially flat.

$$G_{\mu\nu} = g_{\mu\nu} + a \varepsilon u_{\mu} u_{\nu}$$

31/10/2005

Higher-D graviton results

• Both δc_f^2 and b_f are more sensitive to mass than in 4D

- More mass in an extra loop is even more worthwhile.
- Planck mass can be *much* smaller.
 - M_d can be as low as 50 TeV.
 - Calculations apply to both ADD and RS scenarios.

D=5

$$c_{f}^{2} - 1 = \frac{110\varepsilon m_{f}^{3}}{9(8\pi M_{5})^{2}}$$
$$b_{f} = \frac{26\varepsilon^{2} m_{f}}{3(8\pi M_{5})^{2}}$$

D=6

$$c_{f}^{2} - 1 = \frac{96\varepsilon m_{f}^{4}}{5(8\pi)^{3} M_{6}^{2}} \log\left(\frac{M^{2}}{m_{f}^{2}}\right)$$
$$b_{f} = \frac{72\varepsilon^{2} m_{f}^{2}}{5(8\pi)^{3} M_{6}^{2}} \log\left(\frac{M^{2}}{m_{f}^{2}}\right)$$

31/10/2005

Lorentz Violation

When do loops win?

Conditions for bounds to be better than $\varepsilon < 10^{-6}$

Dimension	Spectroscopy (TeV)	Cosmic Rays (TeV)
D = 5	$M_5 < 3 \ge 10^4$	M ₅ < 2 x 10 ⁷
D = 6	M ₅ < 700	$M_5 < 9 \ge 10^4$
D = 7	M ₅ < 50	$M_5 < 6 \ge 10^4$
D = 8		M ₅ < 800
	31/10/2005	Lorentz Violation