Proton – Nucleus Potential at the LHC

Jianwei Qiu Iowa State University

QCD at Cosmic Energies - II The Highest Energy Cosmic Rays and QCD Skopelos, Greece, September 26 – 30, 2005

Outline of the Talk

- □ Introduction and Terminology
- □ Important role of *d*+*Au* at RHIC
- □ *pA* collisions at the LHC
- Benchmark tests (universal A-dependence)
- Semihard processes (calculable A-dependence)
- **Summary and Outlook**

Introduction and Terminology

Cosmic ray energy near GZK region:

 $S_{\text{GZK}} \sim 1000 \ S_{\text{LHC}}$

Factorization is an approximation

□ Drell-Yan cross section is **NOT** completely factorized!

 There is always soft gluon interaction between two hadrons!
 Gluon field strength is one power more Lorentz contracted than ruler

$$f^{(2)} \propto \langle p | \overline{\psi}(0) \gamma^{+} \psi(\mathbf{y}^{-}) | p \rangle,$$
$$\langle p | F^{+\alpha}(0) F_{\alpha}^{+}(\mathbf{y}^{-}) | p \rangle$$

$$p = p p$$

$$p = p$$

$$p$$

$$\propto \langle p | \psi(0) \gamma \mathbf{r} \quad (y_1) \mathbf{r}_{\alpha} \quad (y_2) \psi(\mathbf{y}) | p_{\beta}$$

Sources of nuclear dependence

Universal nuclear dependence: from nuclear wave functions

$$f_N^{(2)}(x,Q^2) \to f_A^{(2)}(x,Q^2) \propto \langle A | \overline{\psi}(0) \gamma^+ \psi(\gamma^-) | A \rangle$$

- Process-dependent nuclear dependence (coherent power corrections)
 - Initial-state:
 - Final-state:

$$f_N^{(2)}(x,Q^2) \to f_A^{(4)}(x_1,x_2,x_3,Q^2)$$

- Change total cross section
- Elastic scattering (incoherent multiple scattering)
- Does not change total production rate
- Change the spectrum

5

Important role of *dA* at RHIC

Jet quenching

□ Assumptions:

Soft interactions between the ions does not change the effective PDF's

- Multiple scattering with the medium leads to energy loss
- Reduction of leading hadron momentum leads to suppression at high p_T

Suppression is a final-state effect No suppression expected for dA

Saturation and CGC

Comparison to the d+Au Data

RHIC Data from:

B.Back *et al*. [PHOBOS], Phys.Rev.Lett. 91 (2003) J.Adams *et al*. [STAR], Phys.Rev.Lett. 91 (2003)

S.Adler et al. [PHENIX], I. Phys.Rev.Lett. 91 (2003) F

I.Arsene *et al*. [BRAHMS], Phys.Rev.Lett. 91 (2003)

Theoretical predictions:

I.Vitev and M.Gyulassy, Phys.Rev.Lett. 89 (2002) I.Vitev, Phys.Lett. B562 (2003)

D.Kharzeev, E.Levin,L.McLerran, Phys.Lett. B 561 (2003)

Current Data from RHIC: - support Cronin type effect in d+Au

- disfavor the saturation picture in d+Au

Parton x is not small enough:

- Increases collision energy the LHC
- moves to the forward region lower x

pA program at the LHC

Calibrate the AA measurements (lesson from RHIC) Test QCD dynamics that proton-proton cannot provide (differences between pA and AA) Help extrapolate the hadronic collisions to cosmic ray energies

Benchmark Tests

□ Predictive Power of PQCD - Factorization

Scale of hadron wave function: $\Lambda \sim 1/\text{fm} \sim 200 \text{ MeV}$ - nonperturbative Scale of hard partonic collision: Q >> GeV - perturbative

Time dilation:

dynamics at the scale of Λ is effectively frozen during the partonic hard collision at the scale Q

Parton model:

$$\sigma_{\text{hadron}}(Q, \Lambda) \approx \hat{\sigma}_{\text{parton}}(Q) \otimes f(\Lambda)$$

QCD Factorization:

□ Benchmark tests = "no" power corrections = hard probe

Questions

- □ Where power corrections come from?
- How can we calculate or estimate the size of power corrections?
- Is power correction more (or less) important at small x?
- Is power correction enhanced or suppressed in nuclear collisions?

An example

Inclusive lepton – hadron deep inelastic scattering

Two independent kinematical invariants :

$$\bullet \ Q^2 \equiv -q^\mu q_\mu \geq 0$$

$$\label{eq:constraint} \bullet \ x \, \simeq \, Q^2/s \ \ {\rm with} \ \ s \equiv (P+q)^2 \, \gg \, Q^2$$

lancu's talk

Small-x and coherence length

□ Hard probe – process with a large momentum transfer:

$$q^{\mu}$$
 with $Q \equiv \sqrt{|q^2|} \gg \Lambda_{\rm QCD}$

□ Size of a hard probe is very localized and much smaller than a typical hadron at rest:

$$\frac{1}{Q} \ll 2R \sim \text{fm}$$

□ But, it might be larger than a Lorentz contracted hadron:

$$\frac{1}{Q} \sim \frac{1}{xp} \gg 2R\left(\frac{m}{p}\right)$$
 or equivalently $x \ll x_c \equiv \frac{1}{2mR} \sim 0.1$

If an active parton **x** is small enough the hard probe could cover several nucleons In a Lorentz contracted large nucleus!

Coherence length in different frames

- Use DIS as an example in target rest frame: virtual photon fluctuates into a q-qbar pair
 - Lifetime of the $q\bar{q}$ state:

$$\Delta E_{q\bar{q}} \sim \nu - E_{q\bar{q}} \sim \frac{Q^2}{2\nu} \left[1 + \mathcal{O}\left(\frac{m_{q\bar{q}}^2}{Q^2}\right) \right]$$
$$\Delta z_{q\bar{q}} \sim \frac{1}{\Delta E_{q\bar{q}}} \sim \frac{2\nu}{Q^2} = \frac{1}{mx_B}$$

- $\Delta z_{q\bar{q}} \gg 2$ fm, inter-nuclear distance, if $x_B \ll 0.1$
- □ If $x_B \ll 0.1$, the probe q-qbar state of the virtual can interact with who hadron/nucleus coherently.

The conclusion is frame independent

In Breit frame:

coherent final-state rescattering

September 28, 2005

Dynamical power corrections

□ Coherent multiple scattering leads to dynamical power corrections:

$$d\sigma \approx d\sigma^{(s)} + d\sigma^{(D)} + \dots$$

Naïve power counting:

$$\frac{d\sigma^{(D)}}{d\sigma^{(S)}} \sim \alpha_{s} \frac{1/Q^{2}}{R^{2}} \langle F^{+\alpha} F_{\alpha}^{+} \rangle A^{1/3}$$

□ Characteristic scale for the power corrections:

□ For a hard probe:

$$\frac{\alpha_s}{Q^2 R^2} \ll$$

C Enhanced by nuclear radius: $A^{1/3} \leq 6$

Enhanced by the slope of small-x distribution:

 $\langle F^{+\alpha} F_{\alpha}^{+} \rangle$

September 28, 2005

Coherent multiparton interactions

At small x, the hard probe covers several nucleons, coherent multiple scattering could be equally important at relatively low Q

To take care of the coherence, we need to sum over all cuts for a given forward scattering amplitude

Summing over all cuts is also necessary for IR cancellation

Collinear approximation is important

With collinear approximation:

Different cuts for matrix elements of partons with k_{T} are not equal:

September 28, 2005

Factorization beyond leading power

Consequence of OPE:

$$\sigma_{phys}^{h} = \hat{\sigma}_{2}^{i} \otimes [1 + C^{(1,2)}\alpha_{s} + C^{(2,2)}\alpha_{s}^{2} + ...] \otimes T_{2}^{i/h}(x)$$

$$+ \frac{\hat{\sigma}_{4}^{i}}{Q^{2}} \otimes [1 + C^{(1,4)}\alpha_{s} + C^{(2,4)}\alpha_{s}^{2} + ...] \otimes T_{4}^{i/h}(x)$$
Leading
$$+ \frac{\hat{\sigma}_{6}^{i}}{Q^{4}} \otimes [1 + C^{(1,6)}\alpha_{s} + C^{(2,6)}\alpha_{s}^{2} + ...] \otimes T_{6}^{i/h}(x)$$

$$+ ...$$
Power corrections

□ Predictive power:

- Coefficient functions are IR safe
- Distributions/correlations/matrix elements are universal

Distributions are defined to remove all collinear divergences of the partonic scattering

September 28, 2005

a twist

Multiparton correlation functions

□ Parton momentum convolution:

$$\propto \int \prod_{i} dy_{i}^{-} e^{ix_{i}p^{+}y_{i}^{-}} \left\langle P_{A} \left| \prod_{i} F^{+\perp} \left(y_{i}^{-} \right) \right| P_{A} \right\rangle$$

All coordinate space integrals are localized if x is large

□ Leading pole approximation for *dx_i* integrals :

 $\Box dx_i$ integrals are fixed by the poles (no pinched poles)

 $\Box x_i = 0$ removes the exponentials

dy integrals can be extended to the size of nuclear matter

Leading pole leads to highest powers in medium length, a much small number of diagrams to worry about

Multiple soft rescattering at tree-level

Model for the correlation functions

□ Matrix elements:

$$\left\langle P_A \left| \overline{\Psi}(0) \frac{\gamma^+}{2p^+} \Psi(\gamma^-) \left[\prod_{i=1}^N \int \tilde{F}^2(0) \right] \right| P_A \right\rangle$$

□ Approximation:

Nucleus is made of a group of loosely bound nucleons

$$|P_{A}\rangle \propto \prod_{i=1}^{A} |p\rangle \quad \text{with } p = \frac{P_{A}}{A}$$
$$\left\langle P_{A} \left| \hat{O}_{0} \prod_{i=1}^{N} \hat{O}_{i} \right| P_{A} \right\rangle \propto A \left\langle p \left| \hat{O}_{0} \right| p \right\rangle \prod_{i=1}^{N} \left\langle p \left| \hat{O}_{i} \right| p \right\rangle$$

Reduce the correlation functions to one unknown
 – a universal matrix element

$$\langle p | F^{+\alpha} F_{\alpha}^{+} | p \rangle$$

Contributions to DIS structure functions

□ Transverse structure function:

Qiu and Vitev, PRL (2004)

□ Similar result for longitudinal structure function

September 28, 2005

Leading twist shadowing

Power corrections complement to the leading twist shadowing:

- Leading twist shadowing changes the x- and Q-dependence of the parton distributions
- Power corrections to the DIS structure functions (or cross sections) are effectively equivalent to a shift in x
- Power corrections vanish quickly as hard scale Q increases while the leading twist shadowing goes away much slower

 If leading twist shadowing is so strong that x-dependence of parton distributions saturates for x< x_c,
 additional power corrections, the shift in x, should have no effect to the cross section!

Beyond the tree-level

Correlation functions need to remove all collinear divergences in partonic scattering – factorization

DGLAP evolved PDFs do not remove the collinear divergences beyond single scattering

Redefine PDFs to include all collinear divergences of partonic subprocesses leading twist shadowing

Coherent power corrections to PDFs

Hard probe sees only one effective parton:

Pinched poles in the ladder diagrams – corrections to evolution

A-dependence of benchmark tests

- Coherent multiple scattering is power suppressed
 - But, enhanced by nuclear size
 - Enhanced effect to steep falling distributions
- □ No power correction = Single hard scattering
- □ Leading power collinear factorized formula
- A-dependence of benchmark tests should only involve the universal nuclear dependence from PDF's
 - > y-dependence of W, Z, Higgs, Drell-Yan inclusive cross sections
 - \succ W, Z, Higgs, Drell-Yan transverse momentum distributions
 - > Low mass Drell-Yan at high p_T , and direct photon (isolation cut?)
 - > Inclusive Jets at large E_T
 - Heavy quarkonium transverse momentum distributions at large p_T
 etc.

Nuclear Parton Distribution Functions

Probes small x region (for inclusive jet production)

Poor knowledge on nuclear parton distributions

Hard processes at the LHC can probe parton *x* as small as 10⁻⁵! But, nuclear PDF's (in particular, gluon) are poorly constrained!

W/Z, Higgs, Drell-Yan Q_T distribution

QCD resummation

□ For processes with <u>two</u> large observed scales,

$$Q_1^2 \gg Q_2^2 \gg \Lambda_{\text{QCD}}^2$$
 e.g. p_T -distribution of Z^0

we could choose: $\mu = Q_1$ or Q_2 , or somewhere between

 $\implies \alpha_s(Q_1^2) \text{ is small, } \alpha_s(Q_1^2) \ell n(Q_1^2/Q_2^2) \text{ is not necessary small}$

Cannot remove the logarithms by choosing a proper μ

- Resummation of the logarithms is needed – the virtual photon fragmentation functions
- □ For a massless theory, we can get <u>two</u> powers of the logarithms at each order in perturbation theory: $\alpha_s (Q_1^2) \ell n^2 (Q_1^2 / Q_2^2)$

because of an overlap region of IR and CO divergences

Double log resummation

LO Differential Q_T -distribution as $Q_T \rightarrow 0$:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{\text{Born}} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ell n \left(Q^2/Q_T^2\right)}{Q_T^2} \implies \infty$$

Resum the double leading logarithms – DDT formula:

$$\frac{d\sigma}{dydQ_T^2} \approx \left(\frac{d\sigma}{dy}\right)_{Born} \times 2C_F\left(\frac{\alpha_s}{\pi}\right) \frac{\ell n \left(Q^2/Q_T^2\right)}{Q_T^2} \times \exp\left[-C_F\left(\frac{\alpha_s}{\pi}\right) \ell n^2 \left(Q^2/Q_T^2\right)\right] \Rightarrow 0$$

$$as Q_T \to 0$$

$$as Q_T \to 0$$

Double leading logarithm approximation (DLLA) over constrains phase space of radiated gluons (strong ordering in transverse momenta)

ignore overall transverse momentum conservation

CSS b-space resummation formalism

\Box Leading order K_T-factorized cross section:

The Q_T -distribution is determined by the b-space function: $b\tilde{W}_{AB}(b,Q)$

The b-space resummation

- The b-space distribution: $\tilde{W}_{AB}(b,Q) \equiv \sum_{i=i} \tilde{W}_{ij}(b,Q) \hat{\sigma}_{ij}(Q)$
- The $\tilde{W}_{ij}(b, Q)$ obeys the evolution equation $\frac{\partial}{\partial \ln Q^2} \tilde{W}_{ij}(b, Q) = [K(b\mu, \alpha_s) + G(Q/\mu, \alpha_s)] \tilde{W}_{ij}(b, Q) \quad (1)$
- Evolution kernels satisfy RG equations

$$\frac{\partial}{\partial \ln \mu^2} K(b\mu, \alpha_s) = -\frac{1}{2} \gamma_K(\alpha_s(\mu)) \tag{2}$$

$$\frac{\partial}{\partial \ln \mu^2} G(Q/\mu, \alpha_s) = \frac{1}{2} \gamma_K(\alpha_s(\mu)) \tag{3}$$

- ullet CSS Resummation of the large logarithms \iff
 - Integrate $\ln\mu^2$ in Eq.(2) from $\lnrac{c^2}{b^2}$ to $\ln\mu^2$
 - Integrate $\ln\mu^2$ in Eq.(3) from $\ln Q^2$ to $\ln\mu^2$
 - Integrate $\ln Q^2$ in Eq.(1) from $\ln rac{c^2}{b^2}$ to $\ln Q^2$

$$-c = 2e^{-\gamma_E} \sim 1$$

September 28, 2005

Leading

power in 1/Q²

homogeneous evolution equation
 ⇒ solution proportional to boundary condition

$$W_{ij}(b,Q) = W_{ij}(b,\frac{1}{b}) e^{-S_{ij}(b,Q)}$$

- if $b \ll 1/\Lambda_{\rm QCD}$, boundary condition $W_{ij}(b,1/b)$
 - depends only on one perturbative scale $\sim 1/b$
 - should be fully perturbative, and
 - have no large logarithms
 - \Rightarrow perturbative *b*-distribution

$$W^{\text{pert}}(b,Q) = \sum_{a,b,i,j} \sigma_{ij \to C}^{(LO)} \left[\phi_{a/A} \otimes C_{a \to i} \right]$$
$$\otimes \left[\phi_{b/B} \otimes C_{b \to j} \right] \times e^{-S(b,Q)}$$

Sudakov form factor:

$$S(b,Q) = \int_{c^2/b^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left[A\left(\alpha_s\left(\mu^2\right)\right) \ell n\left(\frac{Q^2}{\mu^2}\right) + B\left(\alpha_s\left(\mu^2\right)\right) \right]$$

- all large logarithms are summed into S(b, Q), and S(b, Q) is perturbative for b not too large

- functions: $C_{a \rightarrow i}$ and $C_{b \rightarrow j}$ are perturbative

• Need non-perturbative input at large b:

Predictive power of the formalism

• *b*-space distribution:

$$\int_0^\infty db \, J_0(q_T b) \, b \, \mathrm{e}^{-S(b,Q)} \, \left[\phi_{a/A} \otimes C_{a \to j} \right] \otimes \left[\phi_{b/B} \otimes C_{b \to \bar{j}} \right]$$

- pQCD dominates if $\int_0^{b_{max}} db(...) \gg \int_{b_{max}}^\infty db(...)$
- or saddle point $b_{sp} \ll b_{max}$:
 - b-dep of $b \mathrm{e}^{-S(b,Q)}
 ightarrow b_{sp} \propto (rac{\Lambda_{\mathrm{QCD}}}{Q})^{\lambda}$, $\lambda \sim 0.4$
 - *b*-dep of $\phi_{a/A}(x, \frac{1}{b})$ and $\phi_{b/B}(x', \frac{1}{b})$ \Leftrightarrow DGLAP evolution

$$\frac{d}{db}\phi(x,\frac{1}{b}) = -\frac{1}{b}\frac{d}{d\ln\frac{1}{b}}\phi(x,\frac{1}{b}) < 0 \quad \text{for } x < x_c \sim 0.1$$

 \Rightarrow larger \sqrt{S} , smaller x, and smaller b_{sp}

Location of the saddle point

Z production (collision energy dependence):

Higher collision energy = larger phase space = more gluon shower = larger parton k_τ

Shift of the peak is calculated perturbatively!

Qiu, Zhang

September 28, 2005

• Fermilab CDF data on Z at $\sqrt{S}=1.8~{\rm TeV}$

Power correction is very small, excellent prediction!

Qiu, Zhang

September 28, 2005

• Fermilab D0 data on W at $\sqrt{S}=1.8~{\rm TeV}$

No free fitting parameter!

September 28, 2005

Qiu, Zhang Jianwei Qiu, ISU

Higgs production

Large <Q_T> here is generated by gluon shower, but, is **perturbatively** calculated!

Berger, Qiu Jianwei Qiu, ISU

Dominated by gluon-gluon fusion Narrow b-distribution = reliable perturbative calculation Berger, Qiu, Wang

September 28, 2005

CDF Run – I Upsilon data

Berger, Qiu, Wang

September 28, 2005

D0 Run – II Upsilon data

Berger, Qiu, Wang Jianwei Qiu, ISU

A good probe of gluon distribution

Resummed Drell-Yan type process is a good probe of gluon distribution at small-x

Resummed p_T -distribution is determined by b-space distribution

$$x_A = \frac{Q}{\sqrt{S}} e^y$$
, $x_A = \frac{Q}{\sqrt{S}} e^{-y}$, at $\mu \sim \frac{1}{b_{sp}}$

❑ Although infinite soft gluon radiation involved, the broadening of p_T distribution is perturbatively calculable

Since these particle does not interact much with hadronic matter, this process is a good probe of nuclear gluon distribution in pA collision Shadowing can lead to enhancement in p_T distributions of W and Z production

□ W/Z production is dominated by low p_T region □ the shape is controlled by the gluon shower

September 28, 2005

Semihard processes

- □ Momentum exchange in the hard collisions, Q, is much larger than non-perturbative hadronic scale: $1/\text{fm} \sim \Lambda_{\text{QCD}}$
- □ But, the scale, Q, is not large enough that the medium size enhanced power corrections are important
 - (A^{1/3}-1) ξ^2/Q^2 is not too much less than 1

 ξ^2 is a medium sensitive scale $\propto \langle F^{+\alpha}F^+_{\alpha} \rangle$

- □ Like the leading power, predictive power of pQCD for the power corrections also relies on the factorization
- Without the factorization, calculations and predictions are model dependent
- □ Factorization holds for A-enhanced power corrections in pA□ Factorization fails for AA beyond $1/Q^2$

Factorization in p-nucleus collisions

□ A-enhanced power corrections, A^{1/3}/Q², are factorizable:

But, power corrections to hard parts are process-dependent, and they are different from DIS

Multiple Scattering

- \Box Single hard scattering of momentum exchange, Q, is localized in space-time of 1/Q, which is much less than nucleon size ~ fm

 - the scattering is only sensitive to the local parton densities (or distributions)
- Need multiple scattering to probe the medium properties (or structure)
 - Coherent multiple scattering is suppressed by the powers of the hard momentum scale, $1/Q^n$ Need semihard processes to probe the coherent medium effect

Incoherent multiple scattering Glauber formalism

Qiu, Sterman, 2003

Power Corrections in p+A Collisions

- Hadronic factorization fails for power corrections of the order of 1/Q⁴ and beyond
- □ Medium size enhanced dynamical power corrections in p+A could be factorized $P_c \sim h_l$

to make predictions for p+A collisions

□ Single hadron inclusive production:

Once we fix the incoming parton momentum from the beam and outgoing fragmentation parton, we uniquely fix the momentum exchange, q^{μ} , and the probe size

 \Leftrightarrow coherence along the direction of q^{μ} - p^{μ}

Role of coherent power corrections

 \Box Ratio of physical observables: R_{A}

$$R_A \equiv \frac{F_2^A/A}{F_2^D/2}, \quad \frac{\sigma^{dA}}{\langle N_{coll} \rangle \sigma^{NN}}, \text{ etc.}$$

- * power correction to cross section
- * power correction to evolution equation of pdf's

Phase diagram of parton densities

Conclusions

- Test the predictive power of pQCD in nuclear collisions by verifying the universality of nPDF's through the hardest probes, only available at the LHC
- □ Measure the nPDF's over an unprecedented range of x, Q^2
 - find out the true nuclear modification to the PDF's by probing ultra-soft gluons through the y-dependence
 - QCD resummation significantly improve the predictive power, including the low p_T region, which is sensitive to soft gluon shower.
- Study the multiple parton correlations in nuclear medium by probing the semihard subprocesses
 - Heavy quarkonium, low mass Drell-Yan pair, dijet or di-hadron correlations, …
- pA at the LHC can certainly provide a much needed help for extrapolating the hadronic collision to the GZK energy

A new approach to the large b-region

$$\tilde{W}_{QZ}(b,Q) = \begin{cases} \tilde{W}(b,Q) & b \leq b_{max} \\ \tilde{W}(b_{max},Q) \tilde{F}_{QZ}^{NP}(b,Q;b_{max}) & b > b_{max} \end{cases}$$

- solution of the CSS evolution equation in small-b region
- Preserve the perturbative small b-region unchanged
- solution of the modified CSS evolution equation, including leading power corrections, in large b-region

$$F_{QZ}^{NP}(b,Q;b_{max}) = \exp\left\{-\ln\left(\frac{Q^2 b_{max}^2}{c^2}\right) \left[g_1\left((b^2)^{\alpha} - (b_{max}^2)^{\alpha}\right) + g_2\left(b^2 - b_{max}^2\right)^{\alpha}\right) - \bar{g}_2\left(b^2 - b_{max}^2\right)\right\}$$

★ g₁ and α are fixed by the continuity of W(b,Q) at b_{max} ★ √S is built in the value of g₁ and α

Rapidity *y*-dependence for W, Z and Drell-Yan cross sections

September 28, 2005