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Introduction and Terminology

d Cosmic ray energy near GZK region:
Sazx ~ 1000 5) ¢

Q typical momentum exchange (y~0):  (x)~ \/??2
() (v~ 0) =107
(X)10e (¥~ 0)~107
(e P =0) =107 ey (x,) (¥, ~0.1)~107°
%+ Processes

4 Is leading power pQCD calculation valid? 2 'S (or x1,x2)

d 2 2\ (2 2\ 40(x, %)) :
d—;:‘l‘(ﬁ} (ﬁ_zf-[ ](?‘71.-.9 )‘f(](xij ) O_dTQET {]O{Q&ﬂ/

Neglect soft interaction between beams!
== Universality of PDF’s

Unexplored region

September 28, 2005 3 Jianwei Qiu, ISU



Factorization is an approximation

 Drell-Yan cross section is NOT completely factorized!

“* There is always soft gluon
interaction between two hadrons!

“ Gluon field strength is one power
more Lorentz contracted than ruler

T e L ]
dQZ :f' @f ' sz <p‘F+a(0)Fa+(T_)‘p>
1 (2) 4 (?rc.-H} P Qp
— Y,
+Q;_+ e/ a0 . o
L #(2]) e (ol O (00 ) (55 o)l
‘|'Q4 F S +

Not factorized!
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Sources of nuclear dependence

J Universal nuclear dependence:

lear wave functions O >+ f‘/\@

£0(2.0%) = £ (x.0%) = (4|7 (0) 7y (v7)| 4)

J Process-dependent nuclear dependence

from nuc

(coherent power corrections)

e Initial-state: @
e Final-state:
f‘-ﬁm (T o ) —> f._'H:I (xr-xz BE QE] ®
+ Change total cross section
 Elastic scattering
(incoherent multiple scattering)
<+ Does not change total production rate @

< Change
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Important role of dA at RHIC

i i i L I L I ¥ I I R IR IR
O PHENIX n° STAR h
J _Slngle mc_lu_swe hadron , | © ™o sesl W
in AA collision : (PHENIX 0-10%) 1 ]
o ]
RAB — AR -1
10
<Nb1n3ff >AB<D—J‘N> —~1
C
3
[
% What cause the suppression _1_2;;;;_35% o * l__ 30-40% |
or enhancement? 107 o p'H'ELu'xAi::'-'ac'w';%;;;';" IASS
) 1
“+* What should we expect F 5000060
for dA? o EKS shadoh * [ ve=200Gev ]
I —— HWJING shadew | Au+Au — 7°h
10_1 40-60¢% ... ..189780F o
2 4 6 8 10 2 4 6 8 10
Pr (GEV/C)
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Jet quenching

d Assumptions:

*» Soft interactions between the ions does not change

the effective PDF’s h

A A

*» Multiple scattering with the medium leads to energy loss
“* Reduction of leading hadron momentum leads to

suppression at high p;

Suppression is a final-state effect
No suppression expected for dA
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Saturation and CGC

] Soft interactions between the ions alter the PDF’s
’h

—)

+» Convolution of two universal saturated distributions
at a saturation scale: Q,~ GeV,; or
*» Solve classical Yang-Mills Equation
—> gluon density from the AA collisions, then
convert the gluons to the observed hadron
» Momentum of the GeV hadron h is balanced by many
soft particles =—> no back-to-back hadron correlation

Suppression is a initial-state effect
Large suppression expected for dA

R = vRaay <L Ry, =0.2-0.4
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Comparison to the d+Au Data

I ' | ' | ' | '
L4k d+Au |
L 9 .
1.2 —
,-—-\P [ ] d
S 1F T -
g - -
& 0.8 + -
0.6 | ® PHENIXmin. bias n° (PbSc+PbGl) |
04F — Theory, GLV, QV p_-diffusion |
| I | I ] ]
" Minimum bias A BRAHMS d+Au T
1.8 [ PHOBOS 20-40% central @ PHOBOS d+Au
1.6 % STARprelim. d+Au =
vj: 1.2 # | 7
N i
a4 1 .-"" o '
BEE
0-6 (R )m min. bias and central ]
/ ] 2 ] L
0'4 2 4 6 3 10
Pt [Gev]
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RHIC Data from:

B.Back et al. [PHOBOS], J.Adams et al. [STAR],
Phys.Rev.Lett. 91 (2003) Phys.Rev.Lett. 91 (2003)

S.Adler et al. [PHENIX], l.Arsene et al. [BRAHMS],
Phys.Rev.Lett. 91 (2003) Phys.Rev.Lett. 91 (2003)
Theoretical predictions:

I.Vitev and M.Gyulassy, I.Vitev,
Phys.Rev.Lett. 89 (2002) Phys.Lett. B562 (2003)

D.Kharzeev, E.Levin,L.McLerran,
Phys.Lett. B 561 (2003)

Current Data from RHIC:
- support Cronin type effect in d+Au
- disfavor the saturation picture in d+Au

Parton x is not small enough:
- Increases collision energy — the LHC
- moves to the forward region — lower x
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pA program at the LHC

 Calibrate the AA measurements
(lesson from RHIC)
d Test QCD dynamics that proton-proton

cannot provide

(differences between pA and AA)

 Help extrapolate the hadronic collisions

to cosmic ray energies

d ...
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Benchmark Tests

1 Predictive Power of PQCD - Factorization

Scale of hadron wave function: A ~1/fm ~ 200 MeV - nonperturbative
Scale of hard partonic collision: Q >> GeV - perturbative

Time dilation:
dynamics at the scale of A is effectively frozen
during the partonic hard collision at the scale Q

Parton model: A
Ghadron (Q’A) ~ O-parton (Q) ® f (A)
QCD Factorization:

O-hadron (Q’ A) ~ &parton (Q/:u’as (,Ll)) ® f (2) (IU’A)+ O(é)

Infrared safe Universal upto
power corrections

— \ 7
' Y

d Benchmark tests = “no” power corrections = hard probe

September 28, 2005 11 Jianwei Qiu, ISU



Questions

1 Where power corrections come from?

J How can we calculate or estimate the size of
power corrections?

1 Is power correction more (or less) important at
small x?

d Is power correction enhanced or suppressed
in nuclear collisions?

d...
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An example

Inclusive lepton — hadron deep inelastic scattering

electron (I) + proton (P) — electron (I') + X (Px)

Y

proton

electron l - \
l:-

B Two independent kinematical invariants :
¢ ()2 =—¢'q, =0
* x~ Q?/s with s = (P +¢q)? > Q?

lancu’s talk
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Small-x and coherence length

O Hard probe — process with a large momentum transfer:

q“ with Q= \/H > Aqep

U Size of a hard probe is very localized and much smaller than
a typical hadron at rest:

l<< 2R ~fm

O But, it might be larger than a Lorentz contracted hadron:

i 1 > ZR(mj or equivalently x <« xczi~0.l
Q Xp

P 2mR

If an active parton x is small enough
the hard probe could cover several nucleons
In a Lorentz contracted large nucleus!
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Coherence length in different frames

 Use DIS as an example - in target rest frame:
virtual photon fluctuates into a q-qbar pair

— Lifetime of the gq state:
Q? Mg

1 2w _ 1
Azqq ~ AB,: ~ QF — mzp

- Azyz > 2 fm, inter-nuclear distance, if r p < 0.1

QIf g < 0.1, the probe — g-gbar state of the virtual can interact
with who hadron/nucleus coherently.

The conclusion is frame independent

O In Breit frame: = - I
coherent final-state rescattering A
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Dynamical power corrections

O Coherent multiple scattering leads to dynamical power corrections:

(—) Same impact (+)
parameter — p

do ~dc®) +do®) + ..

Naive power counting:

do ") ~ 1/Q°
dO_(S) as R2

b)

<F +a Fa+ > AL/3

2D lightcone dynamics

O Characteristic scale for the power corrections: <F e F; >

a 1
d For a hard probe: Q 2R 2 <

0 Enhanced by nuclear radius: A < 6

O Enhanced by the slope of small-x distribution: ——qD(X)
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Coherent multiparton interactions

At small x, the hard probe covers several nucleons, coherent
multiple scattering could be equally important at relatively low Q

To take care of the coherence, we need to sum over all cuts
for a given forward scattering amplitude

> JIE

Summing over all cuts is also necessary for IR cancellation
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Collinear approximation is important

With collinear approximation:

% Eii ; IR safe

r \q q/’
2 >§§|§§<] ®=£3 %g:
Cuts
Different cuts for matrix elements of partons with k; are not equal:

2 CECEE EE
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Factorization beyond leading power

d Consequence of OPE:

O'Bhys = 5'; ®[1+ C(l'z)as +C(2'2)05S2 +...]®T2”h(x)

™~

+ O-—‘; ®L+CH™ e, +C*Y2 +..]®T,"(x) | Leading twist

A
& .

n i ®[1 (1,6)0[S —|—C(2’6)0532 +__.]®T6I/h(x)
Q \

+ ... Power corrections

d Predictive power:

s+ Coefficient functions are IR safe
++» Distributions/correlations/matrix elements are universal

U Distributions are defined to remove all collinear divergences
of the partonic scattering
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Multiparton correlation functions

O Parton momentum convolution:

f

T 7T LA
o deyf eixip+yi<PA‘HFﬂ(yi_)‘PA>

All coordinate space integrals are localized if x is large

U Leading pole approximation for dx; integrals :

4 dx; integrals are fixed by the poles (no pinched poles)
d x;=0 removes the exponentials
O dy integrals can be extended to the size of nuclear matter

Leading pole leads to highest powers in medium length,
a much small number of diagrams to worry about
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Multiple soft rescattering at tree-level

1 LO contribution to DIS cross section: }—'—( == {(r —zp)

(d NLO contribution:

2

- 5

2;) [22272(0)| &5 lim [

T1—+T | .
N—

dyﬂdyl +a +yo— _
[ () ) 000

(J Nth order contribution:

)
5 () o] o Stewms |11 (o55) | T (r5=2)
@(QNC g B :1:311}]1:20 tm=LB E Ti-1 —Tm E Tm+i — ITm
N—
——
Infrared safe! N v 1 d¥
! zg | (1) NT 2N (z —xp)

September 28, 2005 = Jianwei Qiu, ISU



Model for the correlation functions
1 Matrix elements:

. :

Nucleus is made of a group of loosely bound nucleons
A
|PA>OCH| p> with p =
i=1
N N N
<PA 6,[]6 PA> « A(p|Go| P)TT(p[0)|P)

] Reduce the correlation functions to one unknown
— a universal matrix element

<p‘ F+a|:a+
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\TJ(@%\PW){H I ﬁZ(O)}

O Approximation:

0,

'zz > ‘::U

Il
[HN

0,




Contributions to DIS structure functions

d Transverse structure function: Qiu and Vitev, PRL (2004)
N & s B L >
FT(:I:B,Q)—Z !QQ(A —1)] xﬁdﬂp (x5, Q?%)
H'FIII[:" (mﬂ(]‘_l_&)?'@z) 1000 T T T TIrrT] T T T T TTTT] 1 IIIIIE

. 0.1 — | CTEQS LD u-quark distribution
Single parameter for the power E 3
correction, and is proportional T e N EEE—
X
to the same characteristic scale

O Similar result for longitudinal structure function
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L
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=]
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Leading twist shadowing

 Power corrections complement to the leading twist shadowing:

* Leading twist shadowing changes the x- and Q-dependence
of the parton distributions

* Power corrections to the DIS structure functions (or cross
sections) are effectively equivalent to a shift in x

“* Power corrections vanish quickly as hard scale Q increases
while the leading twist shadowing goes away much slower

4 If leading twist shadowing is t PDF
so strong that x-dependence of
parton distributions saturates

for x< x.,

additional power corrections,
the shift in x, should have —
no effect to the cross section! Xc X
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Beyond the tree-level

O Correlation functions need to remove all collinear divergences
in partonic scattering — factorization

 DGLAP evolved PDFs do not remove the collinear divergences
beyond single scattering

B 7
k k AL
i

1 Redefine PDFs to include all collinear divergences of partonic

subprocesses === leading twist shadowing

September 28, 2005
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Coherent power corrections to PDFs

Hard probe sees only one effective parton:
qlvl
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Modified ladder diagrams

< 2 < '
k k k: :
q q
Lg ?f Leading pole LE s
k k

===p Modified DGLAP evolution equations

1 Stay close to collinear factorization — PDF’s
 x is not too small
d Slow down the evolution in small-x region
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A-dependence of benchmark tests

d Coherent multiple scattering is power suppressed

*» But, enhanced by nuclear size
*» Enhanced effect to steep falling distributions

No power correction = Single hard scattering .
Leading power collinear factorized formula

A-dependence of benchmark tests should only involve

U O

o

the universal nuclear dependence from PDF’s

» y-dependence of W, Z, Higgs, Drell-Yan inclusive cross sections
» W, Z, Higgs, Drell-Yan transverse momentum distributions
» Low mass Drell-Yan at high p+, and direct photon (isolation cut?)

> Inclusive Jets at large E+
» Heavy quarkonium transverse momentum distributions at large p-

> etc.
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Nuclear Parton Distribution Functions

1 Probes small x region  Poor knowledge on nuclear
(for inclusive jet production) parton distributions

=~ r Rg(Xx,Q2=5GeV?)
HKM

" EKS98 7

. A t _~ Frankfurt |
s rmesto -~
10 0.5 / et /
| [r=0.001 o
10 o
0 05 1 15 2 25 3 35 4 1075 104 10-3 X
15“‘Ijet

Hard processes at the LHC can probe parton x as small as 10!
But, nuclear PDF’s (in particular, gluon) are poorly constrained!
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WI/Z, Higgs, Drell-Yan Q; distribution

} . v .
.:E Perturbative contributions
S i +power corrections

S 120 b / P

Q -

=

r

=

= 100 |

T

Perturbative

pp — (W"‘ — EL-'E)X

CTEQ6eM

physics dominates

Ot 3 10 14

Nonperturbative
dynamics ("intrinsic k")
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Qr, GeV

Showing the
different theoretical
regions in
momentum space

Drell-Yan type
subprocess

Photon can
replaced by
W, Z, Higgs, etc.
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QCD resummation

 For processes with two large observed scales,

QA >Q > Aczch e.g. p, -distribution of Z°
we could choose: u= Q, or Q,, or somewhere between

e a1, (QF) i small, a, (Q7 )n(QF /Q7) is not necessary small

Cannot remove the logarithms by choosing a proper u

=== Resummation of the logarithms is needed
— the virtual photon fragmentation functions

 For a massless theory, we can get two powers of the
logarithms at each order in perturbation theory:
o, (QF ) n*(Q7 1 Q%)

because of an overlap region of IR and CO divergences
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Double log resummation

q VWV W | LO Differential Q,-distribution as Q;—0 :
g do_(do) e (%WQZ/Q%) .
m = ddeT2 LO dy Born i a4 QTZ

1 Resum the double leading logarithms — DDT formula:

do ~£d0j xch(“Sjm(%Z/QT)xexp{—cF(ﬂjznz(Qz/Qf)} — 0

dydQ? | dy r : -

as QT_)O

 Experimental fact: dddgz = finite [neither co nor 0!] as Q; — 0
yalr

Double leading logarithm approximation (DLLA) over constrains
phase space of radiated gluons (strong ordering in transverse momenta)

ignore overall transverse momentum conservation
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CSS b-space resummation formalism

d Leading order K-factorized cross section:

dQ*dQ;

><52(QT

do g

d(gyAB > Zf:jdéadgb

J.dzkAszkBszks,T

(27)

XPf/A(é:a kAT)Pf_/B(gb kBT)Hff—(QZ)S(kS,T)

—ky —K, 1)

~ — 1 ib- bk
52(QT _Hki,T) :7‘[de ebQTHe Okir

dQ°dQr

=(2 - [4% €V, (0,Q) + ¥, (Q7.Q7) /ﬁrge ogs
7Z'

™~

resummed

—Jdb ‘JO(bQT) bWAB (b’Q) "‘{
7)%

(Pert) (Asym)
do, do g }

QY7 0Q'IQ;

The Q;-distribution is determined by the b-space function: bV\7AB (b,Q)
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The b-space resummation

® The b-space distribution: V\7AB (b,Q) = Z V\7ij (b, Q)O:ij (Q)
— I’I
e The W;;(b, Q) obeys the evolution equation
o0 = -
6 ) Qz Wij (b: Q) — [K(bﬂ,, afs) + G(Q/iu': C’—'S)] Wij (ba Q) (1)

e Evolution kernels satisfy RG equations

0 1
B1n 2 K (bm: @a) = —57xc (@a(1)) )
0 1

e CSS Resummation of the large logarithms <=
2 . c’ 2
— Integrate In ;1= in Eq.(2) from In £ to In

— Integrate In 12 in Eq.(3) from In Q2 to In 2

5 Leading
— Integrate In Q2 in Eq.(1) from In 35 to In Q2 power in 1/Q?2
—-c=2e"7F ~ 1
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e homogeneous evolution equation
—> solution proportional to boundary condition

1. _s. .,
sz(ij):WtJ(b?g)e r,_;{ Q)

e ifb < 1/Aqcp, boundary condition W;; (b, 1/b)
— depends only on one perturbative scale ~ l/b
— should be fully perturbative, and

— have no large logarithms
= perturbative b-distribution

WP (b,Q) = Y 0Ol [#aya ® Camsi]

a,b,t,J
® [Gf*b/.e ® Cb—rj] x e 20 Q)
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J Sudakov form factor:

2

S6.0)= | dﬁz{A(aS(ﬂz))f”[Q—E%B(% (ﬂz))}

c2p2 M H

— all large logarithms are summed into s(b, Q), and

S(b, Q) is perturbative for b not too large

— functions: ¢,—; and C,—, ; are perturbative

k

pbW(b,Q) |

Non-perturbative

input

> b

bsp bmux

e Need non-perturbative input at large b:
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Predictive power of the formalism

e )H-space distribution:
/ db Jo(grb) be "D g, /4 ® Casyj|®@[d4/8 ® Cysj )
0

e pQCD dominates if fU mEdb(..) > fbmm (...)

e or saddle point bsp K bmaq:

— b-dep of be~S®:Q) _, p, (AQ%)-",)\ ~ 0.4

— b-dep of 94/ 4(, +) and ¢y, (2, )
< DGLAP evolution

1 d 1
i —) <0 forx <z, ~ 0.1
)

oz, -

d
FTRASE —)
= larger /.S, smaller z, and smaller by,
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Location of the saddle point

4 Z production (collision energy dependence):

— 2 —
—_— | LI | LI LI L] LI (]
s [ [ [ | ] 2 a0
=" - (b) Vs =1.8 TeV - = 160
< 4000 [ y=0 — 140
i 120
i 100
2000 80
60
40
20
°% 05 1 15 2 e | e
- b(.‘”GEV) 0 02040608 1 1.2 I.-Ihl{.f;:wl
Higher collision energy = larger phase space
= more gluon shower
= larger parton k;
Shift of the peak is calculated perturbatively!
Qiu, Zhang
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e Fermilab CDF dataon Z at /'S = 1.8 TeV

lﬂ- e o L L e b L b
0O 10 20 30 40 50 60 70 80 90

Q; (GeV)

Power correction is very small, excellent prediction!
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e Fermilab DO dataon W at /S = 1.8 TeV

< j 2350
g 10 3 I 1500 |
hd : 1350 |
- N 900 [*
~ I 450 |
= 0
O 2]
5 10 “ ¢
o
©
10 |
| | | ] | | | ] | | | | ] | | | | | | | | | | | | | | | ] | | | ] | | |

0O 10 20 30 40 350 60 70 80

Q; (GeV)
No free fitting parameter!
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Higgs production

=
(]
I

m,=125 GeV

=

P .

- ]

ot
|

Q, (pb/GeV)

va=14 TeV

do/dyd
=)
S
i wn
|

0.075
0.05

, 0.025 |
0 b N T T 0 S B R R

0 02040608 1 1.2141.618 2 0 20 40 60 80 100
(a) b (1/GeV) (b) Q. (GeV)

Gluon-gluon domination = narrow b-distribution
= large <Q;>

Large <Q;> here is generated by gluon shower,
but, is perturbatively calculated!
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Upsilon production

g IIIIIIIIIIIIIIlIIII § IIIIIIIIIIIIIIIIIII
) I . |G| . ]
~% - (a) Vs =1.8TeV - = - (b) vs =1.8 TeV -
oh
= 4000 y=0 - < 4000 y=0 ~
e
2000 H 2000
0 - 0
0 05 1 15 2 0 05 1 15 2
b(1/GeV) b(1/GeV)

Dominated by gluon-gluon fusion
Narrow b-distribution = reliable perturbative calculation
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CDF Run - | Upsilon data

) 1T T 1T 1 I I T 1T 1 I I T 1T 1 I I 1T T 1]
Hﬁ" |-
@ _
S
=10 —
— =
L -
1 :
S
10 = —
Ng - o Y(18) =
- E ______ 0 Y(2S) E
I m Y (3S) >
10 -3 I 1 1 1 I L1 1 1 I L1 1 1 I 1 1 1
0 S5 10 15 20

P (GeV)
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DO Run - Il Upsilon data

"-I4 L | 1T 1 1 I | I D D I | I L
% -1 @/-ﬁ ﬂi\‘ Do Y(19)
$ 10 v . as
>, — / * — < 0. -
- N "V -
S 0 A O yl<18
¢ -
S .
£ 10 = =
: F z
[5 - ™
o - Q -
T 3
10 = =
:I I 1 1 | I 1 1 1 I 1 1 1 I 11 1 I:
0 5 10 15 20
p(GeV)
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A good probe of gluon distribution

1 Resummed Drell-Yan type process is a good probe of
gluon distribution at small-x

Resummed p--distribution is determined by b-space distribution

Q 1

e, atu~

Js o b,,

 Although infinite soft gluon radiation involved, the
broadening of p; distribution is perturbatively calculable

_ y _

 Since these particle does not interact much with hadronic
matter, this process is a good probe of nuclear gluon
distribution in pA collision
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Shadowing can lead to enhancement
in p; distributions of W and Z production

d W/Z production is dominated by low p- region
[ the shape is controlled by the gluon shower

IIﬁ 1 Rsh = dO-(Sh)(pTz’A’ B)/da(pT ’zA’ °)
de de
E:: /. Fixed order pQCD: X, ton < 0.05, Ry, <1
0.7 @ _ Resummed pQCD: shadowing in b-space
0.6 Wib) daldp,

-~ A
area

1 — \
8.8 TeV
0.9

(b) width ||
shaowing

0.8

0 10 20 30 40 50 60 70 80 A P,

pr (GeV) Fai, Qiu, Zhang
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Semihard processes

U Momentum exchange in the hard collisions, Q, is much
larger than non-perturbative hadronic scale: 1/fm~Aqqp

4 But, the scale, Q, is not large enough that the medium
size enhanced power corrections are important

med) (A3-1)E2/Q? is not too much less than 1

€2 is a medium sensitive scale oc<F+“F+a>

d Like the leading power, predictive power of pQCD
for the power corrections also relies on the factorization

 Without the factorization, calculations and predictions
are model dependent

4 Factorization holds for A-enhanced power corrections in pA
A Factorization fails for AA beyond 1/Q?
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Factorization in p-nucleus collisions

[ A-enhanced power corrections, A13/Q?, are factorizable:

No A'3-enhancement

\H, i H\Hx pA[/

Factorization argument similar to DIS

J But, power corrections to hard parts are process-dependent,
and they are different from DIS
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Multiple Scattering

4 Single hard scattering of momentum exchange, Q, is
localized in space-time of 1/Q, which is much less than
nucleon size ~ fm
m=) the scattering is only sensitive to the local

parton densities (or distributions)

1 Need multiple scattering to probe the medium properties
(or structure)

» Coherent multiple scattering is suppressed by
the powers of the hard momentum scale, 1/Q"
==> Need semihard processes to

probe the coherent medium effect

» Incoherent multiple scattering ==) Glauber formalism
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Power Corrections in p+A Collisions

1 Hadronic factorization fails for power corrections of the order
of 1/Q* and beyond

1 Medium size enhanced dynamical power corrections
in p+A could be factorized

= | to make predictions
for p+A collisions

L
%\\JI

(b)
1 Single hadron inclusive production:

Once we fix the incoming parton momentum from the beam
and outgoing fragmentation parton, we uniquely fix the

momentum exchange, gV, and the probe size

< coherence along the direction of g+ - pH
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0.6~

anu(Pr)

T 0.4

Resummed power corrections aty = 4
Resummed power correctionsaty =3 —

BRAHMS R, aty = 3.2
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Role of coherent power corrections

 Ratio of physical observables: R,

R _ FZA/A UdA

, , etc.
’ FZD/2 <Ncoll >O-NN -

* power correction to cross
section

* power correction to
evolution equation of pdf’s

Power corrections to short-distance coefficient

Ra

.....
-------
we®
-“‘
R
.
.
.
o
*

Add the power corrections
to evolution of pdf’'s

CG ?
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Phase diagram of parton densities

O Experiments measure
,'F:fﬂ”a’:’-f) cross sections, not PDFs

QZ(y)
CGC CGF

A
(J PDFs are extracted based on

» factorization
» truncation of perturbative
expansion

1 How to probe the boundary
between different regions?

> pQCD

factorization O Look for where pQCD

factorization fails

>

n(QZ/A?),, In(Q? / A?) | O Power corrections
— improve predictive power
of factorization approach
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Conclusions

[ Test the predictive power of pQCD in nuclear collisions by
verifying the universality of nPDF’s through the hardest
probes, only available at the LHC

d Measure the nPDF’s over an unprecedented range of x, Q2

» find out the true nuclear modification to the PDF’s
by probing ultra-soft gluons through the y-dependence

» QCD resummation significantly improve the predictive power,
including the low p; region, which is sensitive to soft gluon

shower.
 Study the multiple parton correlations in nuclear medium
by probing the semihard subprocesses

» Heavy quarkonium, low mass Drell-Yan pair, dijet or di-hadron
correlations, ...

 pA at the LHC can certainly provide a much needed help

for extrapolating the hadronic collision to the GZK energy
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A new approach to the large b-region

T [ ba Q) b i: bma;:r:
Woz(bQ) =4 e
(bma.‘ru Q) FQE (ba Q; bmum) b > bma;r

s solution of the CSS evolution equation in small-b region
*» preserve the perturbative small b-region unchanged
» solution of the modified CSS evolution equation, including

I in wer corrections, in lar -region
eading power corrections, azgzeb egio Leading twist
b

FE (@ bmae) = exp { —1n( L) [0y (0717 - 43,0.)7)

+g2 (52 - bfnum)]

Intrinsic power ~—__ \ _
corrections G (52 _b° ) } Dynamical power

corrections

“ g, and a are fixed by the continuity of W(b,Q) at b
< 'S is built in the value of g, and a

max
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Rapidity y-dependence for
W, Z and Drell-Yan cross sections

R
With shadowing

do/dy (nb)

do/dy (nb)

For /s =5.5 TeV pp, pPb, Pbp collisions

R. Vogt
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