Status of Geant4 Simulation and validation in ATLAS Central Hadronic Calorimeter TileCal

Andrea Dotti on behalf of TileCal community

Physics Validation of LHC Simulation,

October 26th 2005

Outlook

- Introduction
- Calculation of Sampling Fraction from pions events
- Dead Material correction using Calibration Hit information
- Longitudinal Shower Profile for Pions
- Comparison between different G4 versions
- Conclusions and future work

Introduction

- TileCal had two different kind of test beams programs (with production modules) to compare data and MC:
 - standalone (or calibration) test beam 2000-2003
 - combined test beam (full ATLAS slice) 2004
- Two different versions of G4 used at the time
- Now we can simulate standalone TB in ATLAS official software framework (athena)
- We are starting now to compare data with simulation and different versions of simulation
- Many people involved, here some preliminary results obtained from different people

Sampling Fraction calculation from pions data

Sampling Fraction

- The e.m. sampling fraction is a fundamental parameter of the simulation in TileCal: $E_{cell}(e) = E_{vis}^{tiles}(e)* 1/sf$
- Energy in the cell is the input to next step of simulation (digitization), the output of digitization is very similar to real data
- At Test Beam real modules are calibrated using electrons beams, cells are inter-calibrated using a ¹³⁷Cs source
- A single constant pC/GeV is extracted from electrons data for each module exposed on beam
- This constant is an "avarage" over the response of all the module

Simulation Calibration

- The e.m. sampling fraction extracted from electrons simulation is sensitive to TileCal geometric structure
- The effect of noise, beam profile, reconstruction chain smears this effect in real data: visible at small angles with electrons and muons

 Which constant assume for e.m. sampling fraction in simulation?

6

Electromagnetic Sampling Fraction

Dependence on impact position (period ~18 mm): TileCal module structure

Dependence on beam position (eta) and beam energy: most energetic beams have bigger e.m. showers, the response is smeared on a bigger volume

Sampling fraction from pions using calibration hits

- ATLAS Geant4 simulation now contains information on energy deposit in material (active/passive) divided in:
 - E_{em} (from e.m. process)
 - E_{had} (from hadronic processes)
 - E_{inv} (energy deposits not visible: i.e. nuclei breaks)
 - E_{esc} (escaped energy: i.e. neutrinos, leakages)
- e: $E_{vis} = E_{em} \rightarrow E_{vis}^{sci} / E_{vis}^{tot} = E_{em}^{sci} / (E_{em}^{abs} + E_{em}^{sci})$
- $\pi: E_{vis} = E_{em} + E_{had} \rightarrow E_{vis}^{sci} / E_{vis}^{tot} = (E_{em}^{sci} + E_{had}^{sci}) / (E_{em}^{abs} + E_{had}^{abs} + E_{em}^{sci} + E_{had}^{sci})$
- Pions shower are bigger: naturally smears TileCal geometry effects

Sampling fraction from pion events

Sampling Fraction

37

36.5

36

35.5

 $\mathsf{TSF}_{\mathsf{hadron}} = \mathbf{35.88} \pm \mathbf{0.04}$

 $\mathsf{TSF}_{\mathsf{electron}} = 35.94 \pm 0.02$

Obtained on electrons after removing all the geometric effects

 χ^2 / ndf

p0

33.44 / 7

 ${\bf 35.88 \pm 0.01707}$

0.6

0.7

eta

0.5

Comparison with Real Data

MC Truth MC Reco Real Data

MC Truth obrained from calibration hits (em+had) energy in active and passive material

Dead Material Correction from MC calculations

Material Budget in ATLAS

Cryostat correction to data

- We can use a parametrization to recover energy deposited in crack between LAr and TileCal ($|\eta| < 0.7$) $E = C * \sqrt{Elar3 * Etile1}$
- Elar3: energy in last sample of LAr
- Etile1: energy in first sample of TileCal
- C must be extracted from MC (using Calibration Hits)

Energy in Cryostat

 Good agreement between MC truth (energy in dead material from calibration hits) and cryostat correction calculated from real data

Normalization Constant

 Normalization Constant C is obtained normalizing correction from data to the MC truth. C depends on eta

 $C_{dm} = 1.4 \pm 0.2$ $|\eta| < 0.35$ $C_{dm} = (2.2 \pm 0.2) - (2.0 \pm 0.3)\eta$ $|\eta| > 0.35$

15

Longitudinal Shower Profile

Comparison Data/G4: TileCal standalone simulation

 Now standalone TileCal TB simulation is available in Athena framework with Geant4 version

 Pion beam impinging at 90° degrees on TileCal (used for calibration during TB runs)

• Full

simulation/reconstruction of MC data (sim→digi→reco)

Geant4 validation: Athena framework Vs GOOFY application

TileCal stand alone simulation

- In the past we had a stand alone application (FADS/GOOFY) to simulate TileCal stand alone testbeam based on Geant4 5.2 (here results with QGSP 2.7)
- standalone simulation is now available in ATLAS offline framework (Athena) with Geant4 7.1 (here results with associated QGSP_GN)
- We want to cross check results between two versions of G4 (possible since now we have the standalone simulation in Athena framework)

Total Energy Deposit

- Comparison of different versions of G4
- We have shown results for standalone simulation in:

CERN-LCGAPP-2004-10

- We want to disentangle digitization/reconstruction effects from simulation ones: direct registration of G4 hits in active material
- Applied the same calibration constant to both

Energy in Samples

 Small differences in the two version of the simulation, we have to compare to data to really judge if this is an improvement

Conclusions

- We are starting now to work on many different topics
- We started the systematic study of different aspects of simulation validation
- Some preliminary results show agreement between data and G4
- We need to better understand energy reconstruction on both data and simulation side to give a detailed feedback on hadronic simulation in G4
- Expected many new results in the near future 22

Not touched here

- Many other aspects of detector simulation have not been discussed here (not strictly related to physics validation)
 - Real detector simulation (breaking of ideal detectors symmetries)
 - Energy cluster classification using calibration hits
- Combined simulation with other sub-detectors and comparison with CTB data (already shown some preliminary results in the past)

Results obtained from:

- sampling fraction: G.D Khoriauli, A.
 Khukhunasihvili, Y. Budagov, J. Khubua, Y.A.
 Kulchitsky
- dead material correction: Y.A. Kulchitsky, P.V. Tsiareshka, G.D. Khoriauli, V.B. Vinogradov
- longitudinal shower profile: M. Simonyan
- Athena/Goofy comparison: A. Lupi, A. Dotti
- Support: A. Solodkov, M. Gallas