

Status of the Integration with FTS: ALICE Report

Patricia Méndez CERN (IT-PSS) / INFN(CNAF) Pablo Saiz CERN (IT-PSS)

FTS workshop for Experiments Integrators CERN 16 November 2005

www.eu-egee.org

- ALICE Production: General Points
- Current status of the integration
- ► FTS Use
- Issues
- Features to add
- Summary

CGCC ALICE Production: General Points Enabling Grids for E-science

ALICE has it own Task Queue and related services and use the LCG RB to submit the jobs

➤ Pull Model service: a server holds a master queue of jobs and it is up to the CE that provides the CPU cycles. It asks for the jobs

► No Information System is included

➤ It offers a single interface for ALICE users into the complex, heterogeneous (multiple Grids) and fast-evolving Grid reality

Several Grid infrastructures are available during their Data Challenges

- ► LCG INFNGRID possible others in US
- ►> Lots of resources but different middleware

Design Strategy:

Use AliEn as a general front-end

➤ The resource is used transparently and independently of the middleware system behind

Minimize points of contact between the systems

- ➤ No need to re-implement services
- ➤ No special requirements to run on remote CE/WNs

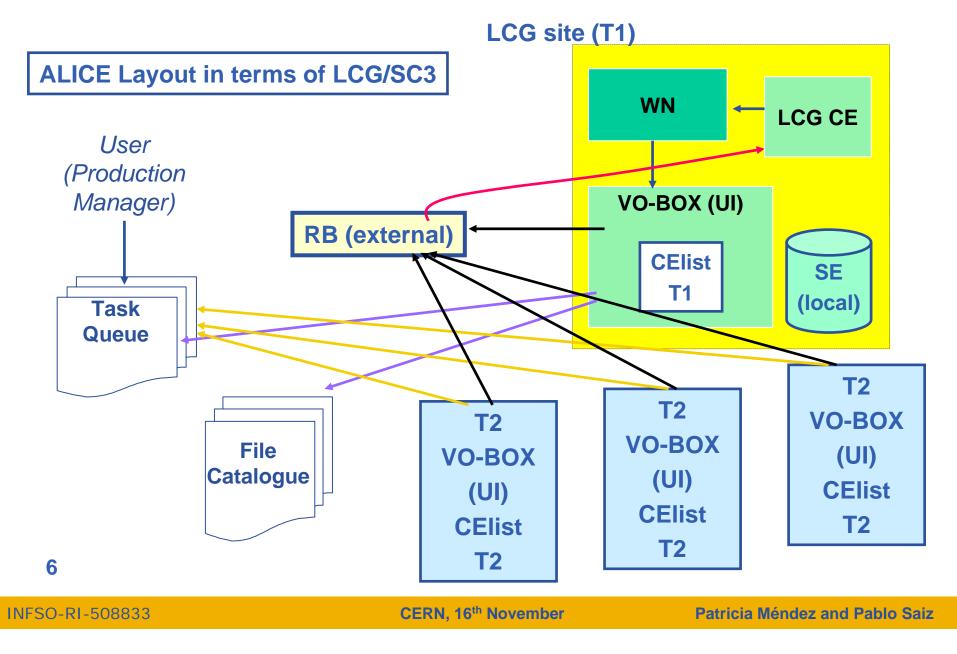
Make full use of the provided services

>> Let the Grids do their work

Use high-level tools and APIs to access Grid resources

➤ Developers put a lot of abstraction effort into hiding the complexity and shielding the user from implementation changes

LCG'2 core sites


➤ CERN, CNAF, FZK, NIKHEF, RAL, Lyon, Taiwan (more than 1000 CPUs)

- ► Each LCG site with a VO-BOX seen independent
- ➤ AliEn services (CE+SE sited in each VO BOX)

➤ LNL.INFN, PD.INFN and several smaller ones (400 CPUs not including CNAF)

CALCE Interfacing AliEn and LCG

Physics Data Challenge: Phases

First Phase: Simulation of Monte Carlo Events in all available resources

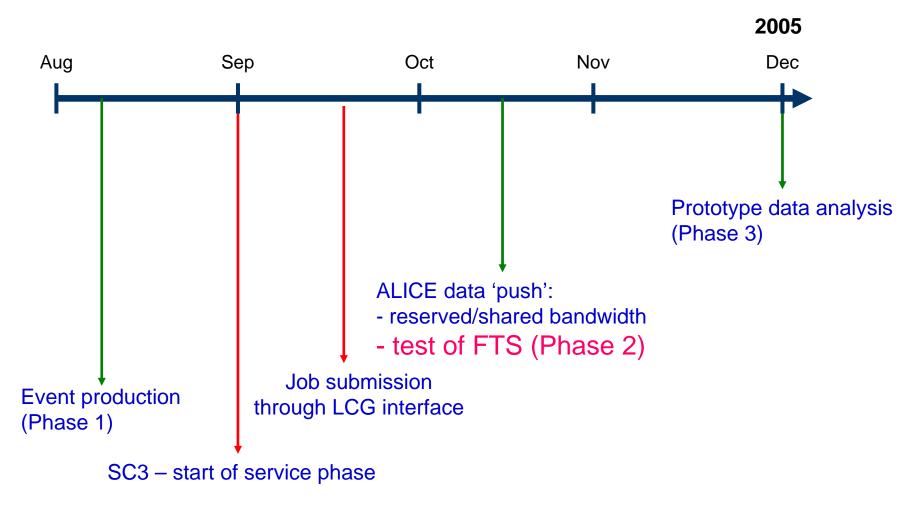
➤ Registration of all the outputs in the Alice File Catalog (central catalog) and store them at CERN-CASTOR (for SC3)

➤ FTS is not required during this phase

➤ It is however tested using the T0-T1 (daily tests) and the T1-T2 ALICE Channels

Second Phase: Reconstruction of the raw events stored at CERN

- ➤ Test of file transfer utilities (FTS)
- ➤ Use of the local catalog at each site (LFC)


Third Phase: Analysis phase

ALICE will use only those sites involved in SC3

CERN, 16th November

Timeline of PDC05/SC3

Énabling Grids for E-sciencE

L. Betev, F. Carminati. GDB Meeting in Bologna. October 2005

eGee

CERN, 16th November

Primary Goals:

►> Use of the deployed LCG SC3 infrastructure for the ALICE DC05

➤ Test of the data transfer and storage services (SC3)

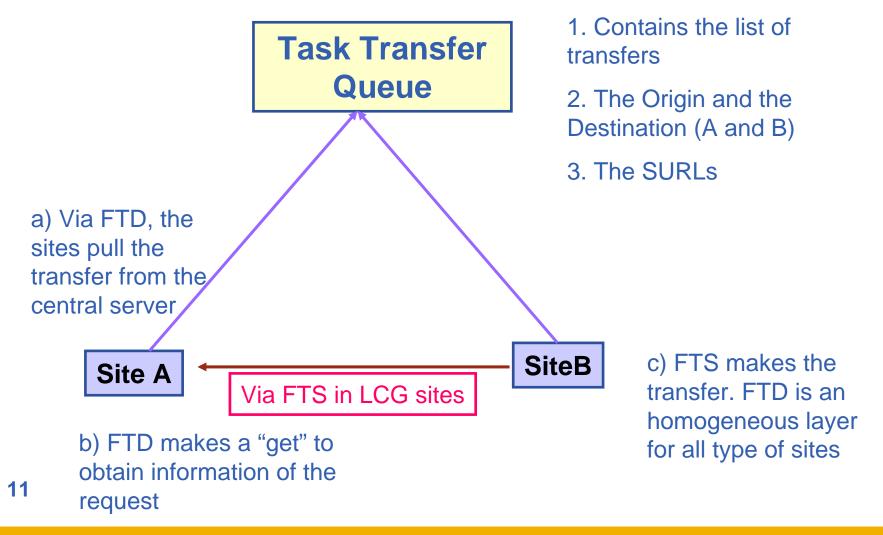
➤ Test of distributed reconstruction and calibration model (ALICE)

➤ Integrate the use of LCG resources with other resources available to Alice within one single VO interface for different Grids

Analysis of reconstructed data

General Overview:

ALICE sees FTS layer as service that underlies data placement


- **DCO4** used FTD (with aiod as protocol)
- **FTS** used as FTD plug-in
- ➤ FTD is the service implemented by ALICE inside all VO-BOXES
- It is implemented in the AliEn framework through the FTS Perl API provided by developers

FTS has to be deployed in all VO-BOXES

- ➤ Due to the ALICE Architecture, the "entry door" to the LCG/EGEE is the VO-BOX
- ➤ It is required the full configuration of the VO-BOX as a UI
- 10

ALICE Layout for the File Transfers

INFSO-RI-508833

CERN, 16th November

• At this moment FTS is used at test level

Daily T0-T1 tests are performed

➤ Massively test all the TO <--->T1, T1<--->T2 connections/endpoint involved in SC3 are planning by ALICE

Configure/test the script execution on VO-BOXES

Issue: with or without LFC registration?

➤ ALICE has decided to run FTS in the simpler mode: NO automatic update of the catalog is required after the transfer

During the ALICE testing phase, the full integration of the PERL API into AliEn will be performed

- **First Phase** of the testing: TO-T1 tests and integration of FTS inside the VO-BOXES
- Second Phase of the testing: T1-T2 connections and deployment in VO BOXES
- T1-T1 channels
 - ► Not explicitly required

➤ Transfers can be performed via CERN as long as the procedure is transparent for ALICE (wait a pair of slides)

ALICE requires the automatic discovery of the FTS Endpoints and the names of the FTS proxies servers through the information system

An upper layer able to hide the transfers among the different SRM

► Not all the channels must be predefined

➤ Giving as inputs the origin and destination SRM (and the SURL) the system should be able to find the best way to perform the transfer

► Hide this procedure to users

Simultaneous updates of the VO-BOX and FTS versions

- ► FTS has to be implemented in the VO-BOX
- ►> At this moment the updates are done by hand

Homogeneous configurations in all sites

- Tool for FTS traffic monitoring
 - ➤ R-GMA probably

Automatic update of the catalog after the transfer

- ➤ Their system takes care of this
- Transfers supporting LFNs are not needed
 - ➤ AliEn defines the LFNs, not LCG
- Tx-Ty predefined channels not needed
- ALICE does not want to care if there is a channel or not

FTS is a mandatory service for ALICE

It has to be deployed in all SC3 sites

It is planned to be used during the 2nd Phase of the DC05

- At this moment we are in testing phase
 - Daily testing their channels
 - ► Good exercise for SC3 too

ALICE requires a transparent way to perform the transfers

►> Independent of the predefined channels

➤ Caring just about the SRM nodes and not about the SRM endpoints