
CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Persistency Framework
Status

Dirk Düllmann, CERN IT
(on behalf of the persistency framework team)

LHCC Comprehensive Review
25-26 September 2006, CERN

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Persistency Framework Parts

Three Software Packages
• CORAL

– Abstraction of relational database access for Oracle,
MySQL, SQLight and FroNTier

• POOL
– C++ object persistency (via Root or Databases) and

navigation (via catalogs and collections),

• COOL
– Management of versioned conditions time series

• Layered and complementing each other
– COOL and POOL use CORAL to access databases
– Experiments use COOL to reference conditions objects

stored in POOL

2

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

PF - Main developments

• CORAL
– Key importance for database deployment

• DB lookup, monitoring, authorization, connection pool
• encourage efficient db apps by API design (bind var’s,

effective use of db sessions)

• Allowed to factorise out database specific
dependent code in POOL/COOL

– Eg one COOL implementation instead of separate Oracle and MySQL
flavours

– Same code working now also against SQLight and FroNTier

• Picked up by experiment projects (offline and online)
• Integration with LCG 3D services

– Database service at T0 and T1s
– Replica management via existing LFC service

3

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Component interaction

XML

ROOT I/O

RDBMS
(CORAL)

STORAGE MGR

FILE CATALOG

COLLECTION

P
O

O
L

A
P

I

U
S

E
R

 C
O

D
E

POOL PACKAGES BACKENDS

Oracle

SQLite

MySQL

FronTier

4

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

CORAL - Database Lookup and
Indirection

• Database replica catalog mapping between
– A logical db name: /my/conditions/data

– A physical connect string: oracle://HostName/SchemaName

• Until recently implemented based on XML file
– Local or HTTP based access

• Now optionally hosted in an LFC catalog
– Development in collaboration with RRCAT India
– Ties in with existing LFC service

• Allows to manage available database replicas
• command line tools to add/remove/change

replicate

• authorisation based on LFC ACLs (VOMS roles)

5

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Changes in PF Underpinnings

• POOL
– Consolidation and maintenance phase

– Few functionality request / bug reports

• Significant work went into absorbing changes of the
core infrastructure
– Components moving from SEAL into ROOT

• Reflex support Dec 05

– Interface changes because of different coding conventions
between SEAL and ROOT

– Dependency changes
• Change of exception base class with ROOT Reflex

• POOL user code has stayed largely stayed
unaffected

6

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

PF and Grid Components

• File Catalogs
– Good news: consolidation on fewer grid catalogs

• LFC seems to be established as baseline
• CMS also developed & uses “Trivial File Catalog”

– POOL did not have to invest in new catalog
integration

• Configuration management between apps
and deployment area still an issue
– Versions numbers & compatibility matrix need to

be kept in sync (lfc, gfal, root and gfal plug-ins)

7

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

POOL Storage Manager status

• New functionality added: dictionary auto-loading
– Enables the loading-on-demand of the required dictionary

libraries at run time
– Code completed since POOL_2_2_6 (Atlas contribution)

• Cache and persistency service basically unchanged (apart
from Reflex business)
– Added command lines for the extraction/handling of file ID from

POOL databases

• Root backend in maintenance mode
– Adopted by Atlas, CMS and LHCb
– Following up Root releases (from 4.X to 5.X)
– Backward compatibility in reading mode tested in every release

cycle (data regression test)

– Few bug fixes

8

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Relational Storage Manager

• Relational StorageSvc (ORA) fully functional
– Supports all of the CORAL backends
– Adopted by Atlas and CMS

• CMS in deployment phase

• New features added
– Functionality to set up a POOL database from an existing set of

relational tables
• Command line tools based on XML driver file

– Blob based storage for containers
• Activated as an option, via user defined mapping
• Using customizable streamer
• Could be extended to arbitrary objects

• Next development priority
– Schema evolution handling

• Use cases need to be identified
• Resource allocation and priority defined

9

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

 Initial developments
– Nov-04: start of COOL development
– Dec-04: single-version mode (bulk object read/write)
– Feb-05: performance studies (disable scrollable cursors)
– Feb-05: multi-version mode with tagging
– Mar-05: int64 validities, handling of SQL types

 Software releases (omitting most bug fixes)
– COOL 1.0.0 (Apr-05): first public release
– COOL 1.0.1 (Apr-05): bug fixes
– COOL 1.0.2 (May-05): listChannels, listTags, new CVS
– COOL 1.1.0 (May-05): basic multi-channel bulk insertion
– COOL 1.2.0 (Jun-05): IFolderSet, setDescription, performance

improvements, AuthenticationService
– COOL 1.2.1 (Jul-05): untag/retag, SQLite, Examples, Oracle

privilege mgmt, RAL fixes (pthread lock, #open cursors)
– COOL 1.2.2 (Jul-05): bug fixes in SEAL
– COOL 1.2.3 (Aug-05): PyCool, multi-channel bulk retrieval,

CLOB, user guide

COOL – evolution 2004-2005

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

 Software releases (omitting most bug fixes)
– COOL 1.2.4 (Sep-05): RAL bug fixes (memory leaks)
– COOL 1.2.5 (Oct-05): tools for Oracle table statistics
– COOL 1.2.6 (Nov-05): bulk retrieval with server cursor,

PyCoolUtilities, closeDatabase, countObjects
– COOL 1.2.7 (Jan-06): RAL migration, Reflex migration, Wine
– COOL 1.2.8 (Jan-06): ROOT migration, gcc344, AMD64 test
– COOL 1.2.9 (Mar-06): new CORAL API
– COOL 1.3.0 (Apr-06): ConnectionService, HVS, user tags,

schema evolution, performance fixes, std::exception
– COOL 1.3.1 (Apr-06): bug fixes
– COOL 1.3.2 (Apr-06): Frontier, bug fixes
– COOL 1.3.2a (May-06): rebuild
– COOL 1.3.2b (Jun-06): rebuild
– COOL 1.3.2c (Jul-06): AMD64 bug fixes in ROOT/CORAL
– COOL 1.3.3 (Aug-06): Frontier bug fixes, SEAL bug analysis,

performance report

COOL – evolution 2005-2006

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - s/w dependencies (1)

RelationalCool
(Coral implementation)

CoolKernel
(abstract interfaces)

CoolApplication
(context and factories)

PyCool
(python bindings)

SealKernel

Examples
(user examples)

• Only PyCool depends on ROOT

• RelationalCool, CORAL plugins
and SealServices are loaded at
runtime (SEAL plugin manager)

• COOL depends on SEAL both
via CORAL and directly (not all
dependencies are shown)

CoralBase
(AttributeList)

RelationalAccess
(Coral relational API)

SealBase
(int64, Time)

SealPlatform

PluginMgr

SealUtil
(SealTimer)

boost

SealServices
(Application,

MessageSvc…)

reflex

root

python

 In addition: Utilities (C++),
PyCoolUtilities (python)

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - s/w dependencies (2)

• Fine granularity of package dependencies
– Possible thanks to the use of SCRAM (or CMT)

• ‘scramShowUses’ (COOL tool), ‘cmt show uses’
• Please keep SEAL/CORAL substructure if migrate to CMT…

– Only need to rebuild COOL if specific packages change
• E.g. no need to rebuild if CORAL plugins change

– Only need to build relevant SEAL/CORAL packages
• Private SEAL/CORAL builds routinely used for debugging

• ROOT dependency (only) via PyCool
– COOL rebuild release often needed when ROOT changes
– It would be nice to clarify which ROOT packages Reflex

depends on - and also to minimise these dependencies

• SEAL plugin manager and component model
– Positive experience (in spite of some bugs - being fixed)
– Stability has been a plus - concern if ROOT migration

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

PF and AA Releases

• AA schedule driven by ROOT bug fix releases
– which are driven by experiment requests

• Release frequency increased and latency decreased
– Often just rebuild releases for POOL and SEAL

– Also the warning time in the planning cycle decreased
• CORAL and COOL have to fit new developments in

• Aim to further streamline the process
– PF is high in s/w stack and exposed to code stability and

release granularity of many lower level packages
– Testing early (low down in the s/w stack) would help to

further improve “time-to-user”
• Moved some tests from COOL into CORAL
• Propose to move some I/O related tests down into

ROOT
• We can work with any proposed build-system, but expect the

support of this system not to be in PF

14

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

PF and SEAL components

• Preparing for the next round of core changes

• PF components rely on SEAL component model
– Strategic choice to be prepared for a possible plug-in mgr

change
– Actively involved in SEAL bug fixing (eg threading issues)

• Will be affected by AA evolution in this area
– Just one more standard compromise between

• Removing dependencies by introducing code copies
• Removing code duplications by introducing dependencies

– PF has provide a short list of used SEAL components

• Propose to setup a table of SEAL components and plan
their evolution

15

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

PF Manpower
• POOL/CORAL - Moved to maintenance and improved service

integration
– Activity increasingly IT based - experiment fraction lowered
– Need to insure sufficient experiment participation to insure

efficient debugging inside experiment frameworks

– Limited manpower left also in other areas
• Collections - main ATLAS developer left and tasks moved to

remaining person

• Short term - COOL manpower dropped to 1FTE
– two very effective ATLAS contributors left the project

• Medium term - stability of expertise in the persistency
framework

– all IT based developers face a contract review next year

16

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Instead of a summary: some
quotes from the internal review

• POOL
– Stable/mature product, continued maintenance is essential

– Need to add schema evolution also for relational data

• CORAL
– Separation from POOL works well, endorse new frontier

back-end
– Reaching maturity, emphasis should now be on stability

• COOL
– Manpower situation critical (internal AA move

recommended)
– Continue work on remaining scalability issues

17

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Backup Slides

18

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Component Architecture (I)

RDBMS Implementation
(oracle)

RDBMS Implementation
(sqlite)

RDBMS Implementation
(frontier)

RDBMS Implementation
(mysql)

Authentication Service
(xml)

Authentication Service
(environment)

Lookup Service
(xml)

Lookup Service
(lfc)

Relational Service
implementation

Monitoring Service
implementation

Connection Service
implementation

CORAL Interfaces
(C++ abstract classes

user-level API)

CORAL C++ types
(Row buffers, Blob,
Date, TimeStamp,...)

Plug-in libraries, loaded at run-time,
interacting only through the interfaces.

Client Software

Common
Implementation

developer-level
interfaces

19

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

RDBMS Back-End Technologies

• Oracle
– Fully implements the CORAL API and all internal

optimizations:
• Row prefetching, bind variables, server-side cursors,…

– Based on OCI (C client library) 10.2.0.2

• MySQL
– Better suited where only a low level of administration can

be afforded
– Based on the C client library version 5.0

• SQLite
– File-based; no administration required
– Based on the C client library version 3.3.5

• FroNTier
– Squid caches between client and Oracle database
– Suitable for read-only data
– Implies constraints on the data deployment model (as data

may become stale)

20

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Component Architecture (II)

• Interactions across the various models is based on
the SEAL component model.

• Advantages of this architectural choice
– Client code depends on a very thin and lightweight software

stack
• CoralBase (Data Types, Row Buffers, 195 KB)
• RelationalAccess (API, Exception Hierarchy, 115 KB)

– Efficient unit testing and bug tracking
– Most releases are binary compatible to the previous one:

• The core of the implementation is in run-time loadable
components

• So far 16 releases
– All of them backwards compatible (no need for change in user

code, incremental extensions of the API)
– 11 of them fully binary compatible (no need even to recompile the

user code)

21

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

From the last review until now

• Recommendations in the last internal review:
– “The reviewers welcome the (proposed) split of the RAL

and POOL release cycles”
• CORAL is now released independently of POOL.

– “Improve error handling; error reporting must propagate to
end user with clear indication of which component in the
complicated stack encountered the error, and provide
sufficient description of the error”

• A complete exception hierarchy in CORAL reporting on the
error conditions and the modules throwing the exception.

• CORAL architecture based on a thin component stack.
– “(Security) In a distributed (grid) environment, POOL

should not be the weakest point in the chain”
• Using grid certificates in order to retrieve the authentication

credentials (via LFC)

22

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Authentication Mechanisms

• CORAL connection strings tell only about the location of
a data source
– mysql://HostName/DatabaseName

• Data source access credentials not exposed
– UserName=“Me”, Password=“ThEpAsSwOrD”
– Credential parameters are retrieved from different software

components given the bare connection string

• Two simple implementations currently:
– Credentials from environment variables
– Credentials stored in XML files
– Used for application development and prototyping

• Secure implementation based on LFC is being
developed
– Authentication based using GRID certificates
– Credentials linked to “database roles” and controlled by the LFC

ACL mechanisms
– Extension of the LFCLookupService
– No need for an extra service (again…)!

23

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Client-Side Monitoring

• Reasons for client-side monitoring
– complements the server-side monitoring
– assists application debugging and tuning

• Implementation strategy
– CORAL API defines the interfaces for the call-back objects

that are called by the RDBMS plugins
– Information is pushed from the system to the monitoring

implementation
• Session and transaction time boundaries
• Time duration that the client waits on the server to execute

an SQL command
• The SQL commands themselves

– Current implementation serves as an example
• Experiments are expected to implement their own plugins

that are coupled to specific monitoring systems

24

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

CORAL in Use and Outlook

• CORAL users
– ATLAS

• Via POOL and COOL
• Direct usage from detector geometry and on-line applications

– CMS
• Via POOL (RelationalFileCatalog, Object-Relational Access)
• Direct usage from conditions database and on-line

applications
– LHCb

• Via POOL and COOL

• Main priorities
– LFC-based component for authentication
– Focus on connection handling policies
– Make CORAL thread-safe
– Follow requirements from the 3D activities and implement

the necessary solutions
– Python interface to CORAL

• In cooperation with RRCAT, India

25

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Overall changes

• LCG dictionary evolution followed up (strong dependency)
– Reflection replaced by Reflex
– Reflex moved into Root

– Storage Manager and Collection affected
• CORAL package factored out

– Affected the Relational backends for all of the 3 domains
– Migration transparent in the implementations
– Transition phase keeping POOL::AttributeList in the public

interfaces
• Affected Catalogue and Collection
• Will be soon replaced by CORAL::AttributeList
• New code in the repository, needs to be validated from the

experiments
– Aligned with coral upgrades

• Relational component adapted to use Connection Service

26

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

File catalogue

• Key component, used from the experiment applications
– Not only in the context of the POOL object storage

• Back-ends for grid connectivity evolved in parallel to middleware
– EDG implementation phased out
– LFC, Globus and Glite adaptors for POOL catalogue initially

released
• Implementation provided by the Grid developers
• Performance comparison and benchmarks provided by the experiments

(ARDA team)

– LFC selected following the experiment recommendations
• Built-in security based on grid certificates
• widely used by the experiments
• maintained actively by Grid deployment group

• Other back-ends
– Generic RDBMS implementation based on CORAL still available

• Supports all of the CORAL back-ends
• SQLite and FronTier considered for caching

– XML implementation being re-engineered

27

Dirk.Duellmann@cern.ch

 Persistency Framework Status -

Collections

• A common interface for two ways to define a set of persistent
objects:
– Implicit Collection

• Defined ‘by containment’ in a POOL container.
• Allows to navigate through the object stored in a given database (file or

RDBMS table)
• Adopted by Atlas and CMS
• Developed and maintained by the POOL Storage Manager team

– Explicit Collection
• Defined externally, as a user-defined object set.
• Convenient for metadata-based selections
• Back-ends available in RDBMS, Root
• Developed and maintained by Atlas, in scope with their specific

requirements

• Some improvements completed
– Back-end neutral utilities (command line) upgraded

• Added new functionalities, improved parameter granularity

• Others are foreseen
– Review of the API in order to allow better scalability (Explicit

Collections)

28

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

Issues from March2005 review

• “COOL is very young and has yet to succeed”
– Several production releases since then
– Being deployed in Atlas and LHCb (success in Pere’s terms!)

• “Commitment from Atlas and LHCb to use COOL;
CMS is also considering using COOL”
– Continued commitment (~and manpower) from Atlas/LHCb
– COOL not used by CMS afaik (but no clear statement yet)

• “Experiments interested in COOL should commit
more manpower to ensure project survival”
– Manpower was adequate (not abundant) in 2005-2006
– Present manpower situation critical again since June 2006

(both Atlas collaborators left - no more Atlas contribution)

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - backend support

• Oracle
– From the start (replace old CondDBOracle)
– Main focus of development and performance optimization

• MySQL
– From the start (replace old CondDBMySQL – “Lisbon API”)

• SQLite
– Since COOL 1.2.1 (July 2005)

• Frontier
– Since COOL 1.3.2 (May 2006)
– Read-only backend - cannot reuse the same test suite

• A lot of work in the last two months and still in progress

• Same relational schema for all backends
– A choice (for COOL-independent copies), not a necessity

• Cross-backend replication (e.g. Octopus) not tested yet

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - software releases

• COOL development started in November 2004
– First production release 1.0.0 in April 2005
– Latest production release 1.3.3 in August 2006

• Current release numbering (after some evolutions)
– Minor release (e.g. 1.3.0) for important enhancements with

schema changes and backward-incompatible API changes
– Bug-fix release (e.g. 1.3.2) for enhancements with no

schema changes and backward compatible API changes
– Rebuild release (e.g. 1.3.2a) for rebuilds using the same

source code and changes only in external dependencies

• 21 software releases so far – details later
– 4 minor releases, 14 bug-fix releases, 3 rebuild releases
– Rebuild releases are a very recent concept (1.3.2a-b-c)

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - CORAL feedback

• Tight collaboration with CORAL
– Excellent interaction with CORAL team
– Reuse of configuration infrastructure
– COOL-oriented enhancements of CORAL
– Fast support and bug fixes
– “Hidden” team – CORAL does a lot of the COOL job!

• CORAL thoroughly tested within COOL
– Same code tested against all 3 (or 4) backends

• All available data types are routinely tested
– Contributed many bug reports (and many fixes)
– Mutually beneficial collaboration!

• Benefit from separation of RAL from POOL
– No software dependency of COOL on POOL

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL development team

Active manpower
• A.V. (CERN - IT/PSS)

– 80% FTE since Oct. 2004
– Project coordination, core development and release mgmt

• Marco Clemencic (CERN - LHCb)
– 20% FTE since Nov. 2004
– Core development and release mgmt

• With useful contributions from many other people
– David Front (IT/LCG since April 2005) - stress tests
– Richard Hawkings and other ATLAS users, testers and DBAs
– The CORAL, SEAL/ROOT, SPI and 3D teams

Former collaborators
• Sven A. Schmidt (Mainz - ATLAS)

– 80% FTE (Oct. 2004 to June 2006) - back at 20% FTE in October?
– Core development

• Uli Moosbrugger (Mainz - ATLAS)
– 80% FTE (Sep. 2005 to March 2006) – performance optimization

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - performance (1)

• Studied both query optimization and use case validation
– Focus is Oracle only – not MySQL or SQLite (no manpower…)

• Scripts to compute table statistics since COOL 1.2.5 (Oct 2005)
– Understood tricky features of Oracle execution plans

• Atlas prompt reconstruction validation studies (October 2005)
– Achieved 20 MB/s and 20k rows/s sustained read-back rates
– See CHEP2006 poster for details

• Performance report since COOL 1.3.3 (Aug 2006)
– Example: report for COOL 1.3.3 linked to COOL web page
– Includes plots for several pre-defined use cases (e.g. single/multi-

version insertion/retrieval from single/multi-channel folders)
• Most of the issues shown in the COOL 1.3.3 report are pending
• Some instead are fixed in CVS HEAD or in private test code

http://indico.cern.ch/contributionDisplay.py?contribId=338&sessionId=13&confId=048
http://indico.cern.ch/contributionDisplay.py?contribId=338&sessionId=13&confId=048
http://lcgapp.cern.ch/project/CondDB/COOL_1_3_3/PerformanceReport/slc3_ia32_gcc323_dbg/index.html
http://lcgapp.cern.ch/project/CondDB/COOL_1_3_3/PerformanceReport/slc3_ia32_gcc323_dbg/index.html

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - performance (2)

• Example: query time for single-version single-channel retrieval
of all IOVs between two time points t1 and t1+Δt

– Query time increases with increasing values of t1

– Fix prototyped in private COOL code, but not yet in CVS

– Effect previously observed (now fixed) to fetch one IOV at time t1

COOL 1.3.3 Fixed (not yet in CVS HEAD)

K. Dahl

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it LCG AA Review: COOL - A. Valassi - 19 September 2006

COOL - data distribution

• Replication at the database backend level
– Oracle Streams technology (tested and deployed

within the 3D project) - see slides about Atlas and LHCb
– Cross-technology replication is possible in principle (same

schema for all backends), not really considered/tested yet

• Oracle remote access via Frontier
– Intermediate Squid web caches
– Work in progress (functional/performance tests with Squid,

cache optimization for specific use cases…) – Atlas tests

• Replication using tools based on the COOL API
– Data slicing/selection is also possible
– Cross-technology replication (e.g. to SQLite files)
– Work in progress (dynamic replication) - COOL 1.4.0

 David Quarrie

ATLAS Feedback

LCG Application Area Internal Review - 19 Sep 2006

37

COOL (1/2)

 ATLAS making extensive use of COOL 1.3 in both online and offline
 Store calibration, alignment, online configuration and DCS data

 Over 50GB of COOL data from online detector commissioning (and reco/analysis), offline data
challenges and legacy combined testbeam data

 More and more ATLAS software is making use of COOL

 A success!

 We’re very concerned about COOL manpower situation
 Several medium term requests, channels data, multichannel bulk insert, payload queries, full Frontier

support (almost there), etc., have been around for 6-12 months but not yet addressed

 ATLAS lost very active developer (Sven Schmidt) so some of the shortfall is result of this

 No realistic medium term plan/schedule
 Mainly due to manpower shortfall

 Many deliverables have been a few months away for 6 months or more

 COOL development significantly affected by changes in LCG Infrastructure (SEAL, ROOT)

 Concern about further disruptions

 E.g. SEAL plug-in manager

 David Quarrie

ATLAS Feedback

LCG Application Area Internal Review - 19 Sep 2006

38

COOL 2/2

 Some longer term concerns about scaling of COOL schema model
 1 COOL folder = 1-3 COOL tables
 Optimizations proposed by ATLAS Oracle experts, but…

 Lack of manpower again

 Potentially very disruptive because of radically changed schema

 Bottom line(s):
 ATLAS heavily committed to and dependent on COOL
 COOL team heavily hampered by lack of manpower
 ATLAS very concerned about rate of progress

09/23/2006 Vincenzo Innocente CERN/PH 39

CMS Condition DB
 CMS Condition DB is based on Pool/ORA architecture

 Developed in close connection with the Pool team
– Requirements, Design, Implementation

 Rapid, positive bi-directional feedback
– New features, performance improvements
– bug hunting and fixes, support

 Goal is an optimal blend of RDBMS tools and OO architecture
 Strength of RDBMS (back-end and front-end tools)
 Persistent-object modeling common with event-data

 Excellent results so far, very promising, architecture not frozen yet.
 Must keep the flexibility of this “two faces” approach to allow evolution (and fall-

back)

PhC LCG-AA Internal review 40

Persistency

m POOL
o No need for File Catalog support besides XML (gfal ROOT plugin)
o Stable and reliable
o LHCb contributes to storage manager (M.Frank)

m CORAL
o No direct dependency

m COOL
o Basis for our Conditions DB
o LHCb contributes to COOL Core development (M.Clemencic)
o Framework completed for seamless update of calibrations and

alignment from Conditions
o Migration from XML files to CondDB to take place in coming

months
P SQLite slice used for simulation
P ORACLE DB used at Tier1s & CERN for reconstruction / analysis

