CMS Analysis demo

Georgia Karapostoli (CERN/University of Athens)

LHCC comprehensive review

Demo session

Sep 25, 2006

CERN

CMS Analysis from a physicist's view

User's workflow:

- Determine the physics process.
- Use CMS software to perform the analysis: ORCA (Object-oriented Reconstruction and Analysis software) with dedicated analysis application ExRootAnalysis.
- Determine the data set on which to run the analysis.

Example of a SUSY Analysis:

• Study signal observability of final states with di-leptons within the mSUGRA

framework of Supersymmetry.

- Requires reduction of Standard Model background (ttbar, Z/W, di-bosons, QCD etc)
- Needs large amount of simulated data and massive computational resources.

Introduction to the tool

MOVING THE ANALYSIS TO THE GRID

- Must be registered to the CMSVO server.
- Must be on a LCG User Interface (LCG UI) (any machine that LCG middleware is installed)
- CRAB (CMS Remote Analysis Builder) is an interface tool intended to simplify the process of creation and submission of CMS analysis jobs on the Grid environment.

User's task to run analysis with CRAB:

- <u>Test the analysis locally</u> (analyze one file copied from dataset resident on a remote storage)
- Determine how to split jobs (must finish in reasonable time).
- Modify the CRAB configuration file.
- Run CRAB (submit and monitor job, retrieve output commands etc).

Job preparation to run on the Grid

■ INTEGRATION WITH EXPERIMENT'S DATA MANAGEMENT

 CRAB uses a Data Discovery System to find the right data to access through DBS (Dataset Bookkeeping System) -> user must choose among existing named datasets.

jm03b_TTbar_leptonic	jm_Hit245_2_g133	975959	FNAL
jm03b_TTbar_leptonic	jm_Hit245_2_g133	986000	CERN
jm03b_Wjets_0_20	jm_2x1033PU761_TkMu_2_g133_OSC	0	IN2P3
jm03b_Wjets_0_20	jm_2x1033PU761_TkMu_2_g133_OSC	371000	CERN

■ JOB PREPARATION (in CRAB cfg file)

<u>Declare the input data</u> (user consults a prototypal page which lists all data available with DBS). The user does not need to know where the dataset is located, CRAB takes care for him/her.

```
dataset = jm03b_Ttbar_inclusive
owner = jm 2x1033PU761 TkMu 2 g133 OSC
```

<u>Specify splitting parameters</u> (total number of events, events per job).

Analyze dataset with n parallel jobs.

```
total_number_of_events = -1 (all available)
events per job = 500
```


Job preparation (cont.)

<u>Name of executable</u> (specific to software application). All software-specific libraries the job needs to run are transferred automatically by CRAB.

```
executable = ExRootAnalysis
```

Output file list (names of the output files the application produces)

```
output_file = test.root
```

Option to retrieve output (output returned to UI or copied to a Storage

Element SE). For large outputs, the user should choose to store them in a SE (in this case handling of output gets asynchronous with job completion...)

```
return_data = 1
copy_data = 0
```

Computing Element black/white list

```
ce_black_list (refuse access to CEs listed)
ce white list (allow access preferably to the CEs listed)
```

CMS

Job Submission

- Set up LCG environment
- Set up software-specific environment
- □ Set up CRAB related environment

■ RUN CRAB

```
crab -create # Create all jobs. No submission!
crab -submit 2 -continue [ui_working_dir] # Submit 2 jobs, the
  ones already created (-continue)
crab -create 2 -submit 2 # Create _and_ submit 2 jobs
crab -status # Check the status of all jobs
crab -qetoutput # Get back the output of all jobs
```


Example of real activity done with CRAB

DATA ANALYZED

DATASET	DATASET SITE LOCATION	X-SEC (pb)	# EVENTS (L = 10 fb ⁻¹)	# EVENTS ANALYZED	NUMBER OF JOBS (= # output files)
su05_pyt_lm6	CERN	4	40 K	100 K	200
su05_pyt_LM1	CERN	41	410 K	400 K	800
jm03b_Ttbar_inclusive	FNAL, CERN, CNAF, DESY	492	5 M	3000 K	6000
jm03b_Zjets_85_150	FNAL, CERN, DESY	576	5800 K	290 K	580
jm03b_Zjets_150_250	FNAL, CERN, DESY	162	1600 K	150 K	300
jm03b_Wjets_85_150	FNAL, CERN, DESY	4300	43 M	570 K	1140
jm03b_Wjets_150_250	FNAL, CERN, DESY	1200	12 M	290 K	580
jm03b_WWjets_leptonic	FNAL, DESY	20	200 K	100 K	200
jm03b_WZjets_inclusive	FNAL, DESY	27	270 K	280 K	560
jm03b_ZZjets_inclusive	FNAL, DESY	11	110 K	400 K	800

- **Typical job properties:** takes a few hours (~ 3h) to run over 500 events (1job), ~1day to complete 200 jobs.
- **Grid problems may arise:** i) some jobs crash in periods of high throughput of jobs, ii) CEs down, have to consult BDII of sites for status of CEs.

Some Physics Results

- Output ROOT files contain collections of physics objects (electrons, muons, Jets etc)
- can be further processed with ROOT to plot p_T , invariant mass etc distributions.

• Di-lepton invariant mass distribution in supersymmetric events (mSUGRA LM6 benchmark point):

- Number of SUSY events used correspond to ~24fb-1.
- Needed to rescale ttbar distribution (1600K events used only).
- Needed to increase statistics of samples to account for large statistical uncertainties...

Conclusion

Advantages of the tool

- user does not need to know where datasets reside (CRAB interacts with DBS to discover data)
- user does not need to interact with Grid directly (no worry about LCG commands, JDL files etc)
- user does not need to know which CEs match the requirements of the job (CPU power/time, CMS software installed etc)
- handles to check validity of user's proxy and renewal.
- handles to copy output to a SE in case of large output size.

□ Currently, user must:

- Check BDII of sites (status of CEs, versions of CMS software installed, publishing a Tag etc).
- Determine the output file size if returned to UI (maximum size limit when transferred by output sandbox).