ROOT Math Proposal for Linear Algebra

Application Area Meeting

23 November 2005

Introduction

- Original proposal was to base on the ROOT Linear Algebra package
- TMatrix classes
- Problem for some LHC experiments when used in application like reconstruction
- a standalone package is required
- Removing TObject inheritance is not so simple
- some users (ALICE) need TObject inheritance
- We have performed also detailed evaluation with other existing packages
- test of matrix and vector operations
- Kalman filter test

Expression template packages

- We have considered two packages based on expression templates and very promising
- tvmet (Tiny Vector and Matrix package)
- sourceforge package (see http://tvmet.sourceforge.net/)
- Smatrix
- package developed at MPI Heidelberg by T. Glebe for HeraB tracking
- In both the case the concepts are very similar
- Use expression templates to avoid temporary vectors and build expressions at compile time.
- Example:

$$
D=A * B+C
$$

- all operation are performed in a single loop with minimal overhead and no temporaries (like in Fortran or C)

Performance Tests

- Tests performed (using -O2 optimization)
- Matrix-Vector (M*V+V) and Matrix-Matrix (M*M+M) operations
- inner product $\mathrm{V}^{\text {* }}$ M * V
- matrix inversion
- N.B. For Linux gcc3.2.3 ROOT and CLHEP compiled with -O

SMatrix and tvmet

- tvmet and SMatrix have similar performances
- Both contain only header files (only inline functions)
- Both are based on expression templates
- code can be very clumsy and difficult to understand
- SMatrix is much simpler than tvmet.
- less code and easier to understand
- tvmet is full of pre-processing MACRO's
- author used a shell script to generate repetitive code
- Found problems with tvmet to generate the C++ dictionary
- problem parsing the header with both CINT and gccXML
- SMatrix compiles on the major platforms

SMatrix package

- SMatrix has been designed for track and vertex fits.
- contains inversion, but based on CERNLIB DINV function (not very fast)
- we can add the fast Cramer inversion as in CLHEP and in ROOT up to 6×6 matrices
- SMatrix is not any more mantained.
- The author, T. Glebe (MPI Heidelberg), has another job
- he has no problem that we use the package, provided we recognize his contribution as original author
- Package is rather well documented
- original doc available at

Matrix Proposal

- Include the SMatrix package in ROOT
- an optimized package for small matrices
- works only when size is known at compile time
- good for tracking in event reconstruction
- bring the SMatrix classes in the namespace ROOT::Math
- removing the header files not needed (like SVertex)
- have in ROOT CVS a sub-directory smatrix
- generate only a library with the dictionary
- only for some known the matrix size (like 5×5)
- almost done, works on the various platforms
- should be finished for December ROOT release
- see onlide doc at : http://lcgapp.cern.ch/project/cls/MathLibs/SMatrix/html/

SMatrix interface

- Matrix and Vector classes templated on the scalar type and size (ncols and nrows)
- SMatrix< double, 2 , 5>
- SVector< double, 5 >
- internal data are is a C array
- double array[NCOLS*NROWS];
- I/O is straightforward since size is known at compile time
- have all arithmetic operators
- with matrices, vector and expression (result of any other operations)
- some optimized functions like dot (vector x vector)
- invert() and sinvert() (for symmetric matrices)
- $\operatorname{det}()$ for determinant of square matrices
- more info at Matrix reference doc

Kalman Filter test

- test matrix operations like in Kalman filter
- multiplications, product and inversions of $5 \times 5,5 \times 2$ and 2×2 matrices
- used within ROOT (Linux compiled with -O)

Future Work

- have an STL iterator interface (begin(), end())
- will make it work nicely with the LorentzVectors
- add optimized matrix inversion up to 6×6
- add compatibility with Physics-Geometry Vectors
- some functions in ROOT::Math to multiply SMatrix and SVectors with 3D and 4D Vectors
- requested by LHCb
- add compatibility with existing ROOT Matrix package
- easy constructs and conversions from one to the other
- customized streamer for the symmetric matrices
- for matrix operations is normally faster storing in memory the full matrix

