

ATLAS & 3D

Dario Barberis (CERN & Genoa University)

Dario Barberis: ATLAS & 3D

Calib/Align in the Data Flow

WLCG 3D Replication Tests

Once Oracle streams are established between Tier-0 and Tier-1:

- ATLAS can replicate the 'small' databases such as the Geometry DB
- Start to look at COOL replication, which will involve more data
 - a lot depends on the subdetectors:
 - how they implement their conditions data

- As COOL is not deployed yet, the Geometry DB database application creates the main database server load in the ATLAS distributed production on the Grids
- Recent doubling of the ATLAS Oracle RAC capacities at Tier-0 and the POOL SQLite database replication technique resolved the Geometry DB workflow bottleneck in distributed production
 - The Geometry DB connect failures are now reduced to the level of 0.2%
- Currently we do have enough database server capacities to service the anticipated increase in distributed production levels (by a factor of 2-3) through the end of this year
- Large scale production experience with SQLite replication provided important feedback to the POOL SQLite developers
 - Support for the SQLite connection time-out is required (for nfs)

COOL Status in Offline

- COOL software fully integrated into Athena from Summer 2005
 - Integration consistent with old Lisbon MySQL implementation,
 - > Subdetector clients can migrate adiabatically
- Data model:
- small data payloads directly 'inline' in COOL
- for large payloads, COOL stores:
 - POOL-token refs to data in POOL files or
 - POOL object-relational (only in prototype form now)
- Functionality and performance testing ongoing in both online and offline environments
- Currently small amounts of conditions data in COOL
- Production: uses Lisbon ConditionsDB (MySQL)
 - Primarily conditions data from 2004 Combined Test Beam (CTB)
 - Full migration to COOL is underway:
 - > CTB data being moved to phase out Lisbon by Summer 06
- Commissioning: conditions data from subdetectors
 - Already started
 - Going to COOL not Lisbon MySQL DB
- COOL usage grows in simulation and reconstruction now :
 - COOL data volumes and use will increase significantly

Deployment Next Steps

- Need in production:
 - 'Static' replication of COOL conditions data from February 2006
 - Dynamic replication from June 2006
- Customers:
 - Ongoing support for commissioning data
 - Major simulation production from April 2006
 - Major reconstruction production from July 2006
 - Including calibration
- Closed loop cycles:
 - reconstruct, improve calibration, re-reconstruct

Replication Strategies

- COOL API-level copy from Oracle->SQLite
 - for static replicas works
- Explore Oracle streams for COOL Tier-0 -> Tier-1
 - as soon as 3D ready
- Need dynamic COOL API-level copy (updating replicas)
 - from June 2006
- Evaluate FroNTier-based replication
 - ATLAS will start with using the FroNTier setup of the 3D project
 - We will start with tests of the Geometry DB replication
 - The performance evaluation milestone for COOL replication is scheduled before June
 - To do significant scalability tests beyond the capabilities of the shared service we plan to deploy our own service
- Experience with different solutions in first half of 2006 will guide replication choices at various Tiers for calibration-closed loop cycles in second half of 2006

Cache Consistency

- We appreciate CERN studies of the cache consistency
- We plan to do practical testing with Frontier to determine what our FroNTier caching methods will be with COOL
- Payloads are cached and the IOV lookups are not:
 - The payload lookups will carry an identifier for the particular version/object being retrieved
 - There are use cases when the IOV lookups are not worth caching because they will rarely be repeated
 - Or the IOV lookups could only be cached in certain circumstances

> e.g. in HLT caching IOV lookups could be very useful

- In that way we would avoid the cache consistency problems
 - as long as we do not reuse these identifiers

> which we do not in the COOL model

Ideas for Cache Managing

- To solve the FroNTier cache invalidation issue we will manage cache consistency in a 'controlled' production environment with well-defined 'database content' releases:
 - For example, we wouldn't launch the distributed reconstruction of a particular dataset (e.g. a particular period of data, or a set of MC samples) until the appropriate conditions DB data are available
 - Before launching, we could invalidate ALL of our caches, and let them repopulate themselves as data is requested
- By construction, we would not then be expecting this data to change 'under our feet' during a reconstruction pass
- The same applies in the HLT environment, where we could invalidate caches before each run start
- But this obviously does not apply in chaotic end user environments, and for individuals developing new calibrations

These are just ideas at this stage - they will need to be tested

Conclusions

2006 in ATLAS is a year of the Computing System Commissioning (CSC)

- COOL commissioning is a part of CSC
- ATLAS Tier-0 tests (part of WLCG SC4) include
 - Growing ATLAS database applications: (1) Realistic Conditions DB: Geometry DB, Magnetic Field, etc; (2) Calibration and alignment; (3) TAG database
 - A production quality system using 3D tools is scheduled for September
 - By then, we need to have made choices regarding: Frontier vs replicas, the proper use of Oracle streams, caching strategies etc.
 - > We are interested in testing 3D tools as soon as they are ready
- Database project milestones after completion of Tier-O tests in September:
 - Database infrastructure for TDAQ scalability test
 - scheduled for October-November
 - Deployment of database infrastructure to support large scale distributed production (following FroNTier evaluation in ATLAS)