

ESRIN Grid Workshop Tutorial Introduction to Grid Computing Frascati, 3 February 2005

Security on Grid:

Presented by Roberto Puccinelli

Based on INFN-GRID/EGEE User Tutorial

EGEE is a project funded by the European Union under contract IST-2003-508833

Overview

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

Overview

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

Glossary

- Principal
 - An entity: a user, a program, or a machine
- Credentials
 - Some data providing a proof of identity
- Authentication
 - Verify the identity of the principal
- Authorization
 - Map an entity to some set of privileges
- Confidentiality
 - Encrypt the message so that only the recipient can understand it
- Integrity
 - Ensure that the message has not been altered in the transmission
- Non-repudiation
 - Impossibility of denying the authenticity of a digital signature

Overview

- Glosary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

- Mathematical algorithm that provides important building blocks for the implementation of a security infrastructure
- Symbology
 - Plaintext: M
 - Cyphertext: C
 - Encryption with key $K_1 : E_{K_1}(M) = C$
 - Decryption with key K_2 : $D_{K_2}(C) = M$
- Algorithms
 - Symmetric: $K_1 = K_2$
 - Asymmetric: $K_1 \neq K_2$

Symmetric Algoritms

- The same key is used for encryption and decryption
- Advantages:
 - Fast
- Disadvantages:
 - how to distribute the keys?
 - the number of keys is O(n²)
- Examples:
 - DES
 - 3DES
 - Rijndael (AES)
 - Blowfish
 - Kerberos

Public Key Algorithms

- Every user has two keys: one private and one public:
 - it is *impossible* to derive the private key from the public one;
 - a message encrypted by one key can be decripted only by the other one.
- No exchange of secrets is necessary
 - the sender cyphers using the public key of the receiver;
 - the receiver decripts using his private key;
 - the number of keys is O(n).
- Examples:
 - Diffie-Helmann (1977)
 - **RSA** (1978)

Overview

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

One-Way Hash Functions

- Functions (H) that given as input a variable-length message (M) produce as output a string of fixed length (h)
 - the length of *h* must be at least 128 bits (to avoid *birthday attacks*)
 - 1. given *M*, it **must be easy** to calculate H(M) = h
 - 2. given *h*, it **must be difficult** to calculate $M = H^{-1}(h)$
 - 3. given *M*, it **must be difficult** to find *M*' such that H(M) = H(M')
- Examples:
 - **SNEFRU**: hash of 128 or 256 bits;
 - MD4/MD5: hash of 128 bits;
 - **SHA** (Standard FIPS): hash of 160 bits.

Digital Signature

- Paul calculates the hash of the message
- Paul encrypts the hash using his private key: the encrypted hash is the <u>digital signature</u>.
- Paul sends the signed message to John.
- John calculates the hash of the message and <u>verifies</u> it with the one received by A and decyphered with A's *public* key.
- If hashes equal: message wasn't modified; Paul cannot

repudiate it.

Digital Certificates

- Paul's digital signature is safe if:
 - 1. Paul's private key is not compromised
 - 2. John knows Paul's public key
- How can John be sure that Paul's public key is really Paul's public key and not someone else's?
 - A *third party* guarantees the correspondence between public key and owner's identity.
 - Both A and B must trust this third party
- Two models:
 - X.509: hierarchical organization;
 - PGP: "web of trust".

PGP "web of trust"

- **F** knows **D** and **E**, who knows **A** and **C**, who knows **A** and **B**.
- **F** is reasonably sure that the key from **A** is really from **A**.

The "third party" is called Certification Authority (CA).

- Issue Digital Certificates for users, programs and machines
- Check the identity and the personal data of the requestor
 - Registration Authorities (RAs) do the actual validation
- CA's periodically publish a list of compromised certificates
 - Certificate Revocation Lists (CRL): contain all the revoked certificates yet to expire
- CA certificates are self-signed

X.509 Certificates

Overview

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

GRID Security: the players

Users • Large and dynamic population "Groups" •Different accounts at different sites •Personal and confidential data • "Group" data •*Heterogeneous privileges (roles)* Access Patterns •Desire Single Sign-On • Membership Grid • Heterogeneous Resources Sites Access Patterns • Local policies

Membership

The Risks

- Launch attacks to other sites
 - Large distributed farms of machines
- Illegal or inappropriate data distribution and access sensitive information
 - Massive distributed storage capacity
- Disruption by exploiting security holes
 - Complex, heterogeneous and dynamic environment
- Damage caused by viruses, worms etc.
 - Highly connected and novel infrastructure

The Grid Security Infrastructure (GSI)

Certificate Request

Certificate Information

• To get cert information run grid-cert-info

[scampana@grid019:~]\$ grid-cert-info -subject

/C=CH/O=CERN/OU=GRID/CN=Simone Campana 7461

Options for printing cert information

 -all
 -startdate
 -subject
 -enddate
 -help

X.509 Proxy Certificate

- GSI extension to X.509 Identity Certificates
 - signed by the normal end entity cert (or by another proxy).
- Enables single sign-on
- Support some important features
 - Delegation
 - Mutual authentication
- Has a limited lifetime (minimized risk of "compromised credentials")
- It is created by the **grid-proxy-init** command:
 - % grid-proxy-init

Enter PEM pass phrase: ******

- Options for grid-proxy-init:
 - -hours <lifetime of credential>
 - -bits <length of key>
 - -help

grid-proxy-init

- User enters pass phrase, which is used to decrypt private key.
- Private key is used to sign a proxy certificate with its own, new public/private key pair.
 - · User's private key not exposed after proxy has been signed

- Proxy placed in /tmp
 - the private key of the Proxy is *not* encrypted:
 - stored in local file: must be readable **only** by the owner;
 - proxy lifetime is short (typically 12 h) to minimize security risks.
- NOTE: *No* network traffic!

Proxy again ...

- grid-proxy-init \equiv "login to the Grid"
- To "logout" you have to destroy your proxy:
 - grid-proxy-destroy
 - This does NOT destroy any proxies that were delegated from this proxy.
 - You cannot revoke a remote proxy
 - Usually create proxies with short lifetimes
- To gather information about your proxy:
 - grid-proxy-info
 - Options for printing proxy information
 - -subject
 - -type

- -issuer -timeleft
- -help

-strength

Delegation and limited proxy

- Delegation = remote creation of a (second level) proxy credential
 - New key pair generated remotely on server
 - Client signs proxy cert and returns it
- Allows remote process to authenticate on behalf of the user
 - Remote process "impersonates" the user
- The client can elect to delegate a "limited proxy"
 - Each service decides whether it will allow authentication with a limited proxy
 - Job manager service requires a full proxy
 - GridFTP server allows either full or limited proxy to be used

Long term proxy

- Proxy has limited lifetime (default is 12 h)
 - Bad idea to have longer proxy
- However, a grid task might need to use a proxy for a much longer time
 - Grid jobs in HEP Data Challenges on LCG last up to 2 days
- myproxy server:
 - Allows to create and store a long term proxy certificate:
 - myproxy-init -s <host_name>
 - -s: <host_name> specifies the hostname of the myproxy server
 - myproxy-info
 - Get information about stored long living proxy
 - myproxy-get-delegation
 - Get a new proxy from the MyProxy server
 - myproxy-destroy
 - Chech out the myproxy-xxx - help option
- A dedicated service on the RB can renew automatically the proxy
 - contacts the myproxy server

GSI environment variables

- User certificate files: •
 - Certificate: X509 USER CERT (default: \$HOME/.globus/usercert.pem)
 - Private key: X509 USER KEY
 - Proxy: X509 USER PROXY (default: /tmp/x509up u<id>)
- Host certificate files: •
 - Certificate: X509 USER CERT (default: /etc/grid-security/hostcert.pem)
 - Private key: X509_USER_KEY

(default: /etc/grid-security/hostkey.pem)

(default: \$HOME/.globus/userkey.pem)

- Trusted certification authority certificates: •
 - X509 CERT DIR (default: /etc/grid-security/certificates)

Overview

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

Virtual Organizations and authorization

- Grid users MUST belong to Virtual Organizations
 - What we previously called "Groups"
 - Sets of users belonging to a collaboration
 - List of supported VOs:
 - https://lcg-registrar.cern.ch/virtual_organization.html
- VOs maintain a list of their members
 - The list is downloaded by Grid machines to map user certificate subjects to local "pool" accounts

...
"/C=CH/O=CERN/OU=GRID/CN=Simone Campana 7461" .dteam
"/C=CH/O=CERN/OU=GRID/CN=Andrea Sciaba 8968" .cms
"/C=CH/O=CERN/OU=GRID/CN=Patricia Mendez Lorenzo-ALICE" .alice
...

/etc/grid-security/grid-mapfile

Sites decide which VOs to accept

On the side: user Registration in a VO

- Import your certificate in your browser
 - If you received a .pem certificate you need to convert it to PKCS12
 - Use openssl command line (available in each egee/LCG UI)
 - openssl pkcs12 -export -in usercert.pem -inkey userkey.pem -out my_cert.p12 -name 'My Name'
- Sign the usage guidelines for the VO
 - You will be registered in the VO-LDAP server (wait for notification)
- Gilda (and other VO):
 - You receive already a PKCS12 certificate (can import it directly into web browser)
 - For future use, you will need usercert.pem and userkey.pem in a directory ~/.globus on your UI
 - Export the PKCS12 cert to a local dir on UI and use again *openssl:*
 - openssl pkcs12 -nocerts -in my_cert.p12 -out userkey.pem
 - openssl pkcs12 -clcerts -nokeys -in my_cert.p12 -out usercert.pem

VOMS, LCAS, LCMAPS

- Virtual Organization Membership Service
 - Extends the proxy info with VO membership, group, role and capabilities
- Local Centre Authorization Service (LCAS)
 - Checks if the user is authorized (currently using the grid-mapfile)
 - Checks if the user is banned at the site
 - Checks if at that time the site accepts jobs
- Local Credential Mapping Service (LCMAPS)
 - Maps grid credentials to local credentials (eg. UNIX uid/gid, AFS tokens, etc.)
 - Currently uses the grid-mapfile (based only on certificate subject)
 - In the near future will map also VOMS group and roles

"/VO=cms/GROUP=/cms"	.cms
"/VO=cms/GROUP=/cms/prod"	.cmsprod
"/VO=cms/GROUP=/cms/prod/ROLE=manager"	.cmsprodman

Overview

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - X509 certificates
- Grid Security
 - Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - Command line interfaces
- Virtual Organisation
 - Concept of VO and authorization
 - VOMS, LCAS, LCMAPS
- Security in action

Authentication Overview

Certificate Request

Certificate Signing

Registration

Starting a Session

Signing the Certificate

Configuration on the Server

Authorization Information

Using a Service

Further Information

Grid

- LCG Security: http://proj-lcg-security.web.cern.ch/proj-lcg-security/
- LCG Registration: http://lcg-registrar.cern.ch/
- Globus Security: http://www.globus.org/security/

Background

- GGF Security: http://www.gridforum.org/security/
- GSS-API: <u>http://www.faqs.org/faqs/kerberos-faq/general/section-84.html</u>
- GSS-API: <u>http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWdev/</u> \
 GSSAPIPG/toc.html
- IETF PKIX charter: http://www.ietf.org/html.charters/pkix-charter.html
- PKCS: http://www.rsasecurity.com/rsalabs/pkcs/index.html