

ESRIN Grid Workshop Tutorial Introduction to Grid Computing Frascati, 3 February 2005

www.eu-egee.org

# **Grid Information System**



## **Contents**



- The Information System (IS) in EGEE/LCG
  - ► Users, Components, Design, Infrastructure
- **1** Information System tools
  - User level
  - ► Software manager level
  - ► Site manager level
- A new era: R-GMA
- Summary

# Uses of the IS in EGEE/LCG



#### If you are a user

Retrieve information of Grid resources and status

Get the information of your jobs status

#### If you are a middleware develop

Workload Management System:

Matching job requirements and Grid resources

**Monitoring Services:** 

Retrieving information of Grid Resources status and availability

#### If you are site manager or service

You "generate" the information for example relative to your site or to a given service

# The Information System Elements



### **MDS: Monitoring and Discovery Service**

- ► Adopted from Globus
- ▶ It is the technology adopted by LCG/EGEE to manage the Grid Information

#### **General steps:**

- 1st. At each site **Providers** report static and dynamic service status to **Servers**
- 2<sup>nd</sup>. A **Central system** queries these servers and stores the retrieved information in a database
- 3<sup>rd</sup>. This information will be accessed through a given **access** protocol
- 4th. The central system provides the information in a **given schema**

## MDS is the EGEE/LCG Information System

## **Elements behind the IS**



|                       |      | *************<br>ne data for al | The second second second |         | THE PROPERTY AND PROPERTY AND PARTY. | *****                                               |
|-----------------------|------|---------------------------------|--------------------------|---------|--------------------------------------|-----------------------------------------------------|
| #CPU                  |      | Total Jobs                      | Running                  | Waiting |                                      |                                                     |
| 52                    | 51   | 0                               | 0                        | 0 c     | e.prd.hp.com:21                      | 119/jobmanager-lcgpbs-long                          |
| 16                    | 14   | 3                               | 2                        | 1 1     | cg06.sinp.msu.r                      | ru:2119/jobmanager-lcgpbs-long                      |
| The total values are: |      |                                 |                          |         |                                      | lag infogitog output                                |
| 10347                 | 5565 | 2717                            | 924                      | 1793    |                                      | lcg-infosites output We will see it during the talk |

**x** The general IS architecture has managed the information

**¤** It has been provided by different providers and servers

**¤** It follows the Glue Schema

**¤** The LDAP Protocol has been used to access the information

General Elements

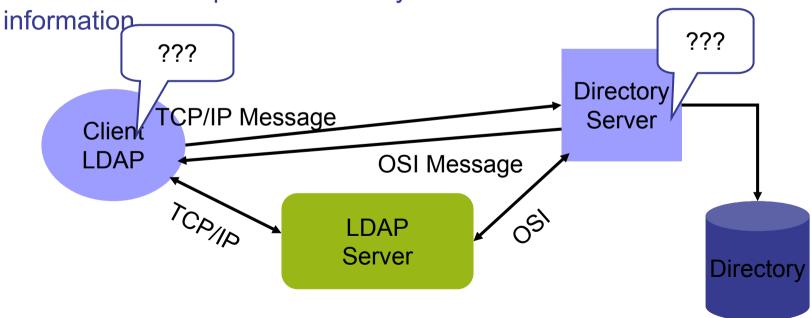
## **Next slides**



#### **First** Block

- The LDAP Protocol: Generalities
- Its Data Model
- The EGEE/LCG Schema: The Glue Schema
  - **Current LDAP implementation**

#### Second Block


- The providers and servers
- Local GRIIes, site GIISes and BDII
  Information transfer between these elements

### The LDAP Protocol: Generalities



## LDAP (Lightweight Directory Access Protocol)

- $\sqrt{}$  It establishes the transport and format of the messages used by a client to access a directory
- $\sqrt{\text{LDAP}}$  can be used as access protocol for a large number of databases
- $\sqrt{}$  It provides a standard data model; the DIT (Directory Information Tree)
- √ It is the internal protocol used by the EGEE/LCG services to share



### The LDAP Protocol: DIT



o = grid (root of

► LDAP structures data as a tree

► Following a path from the node

back to the root of the DIT,

a unique name is built (the DN):

"id=pml,ou=IT,or=CERN,st=Geneva, \
c=Switzerland,o=grid"

objectClass:person cn: Patricia M. L. phone: 5555666 office: 28-r019

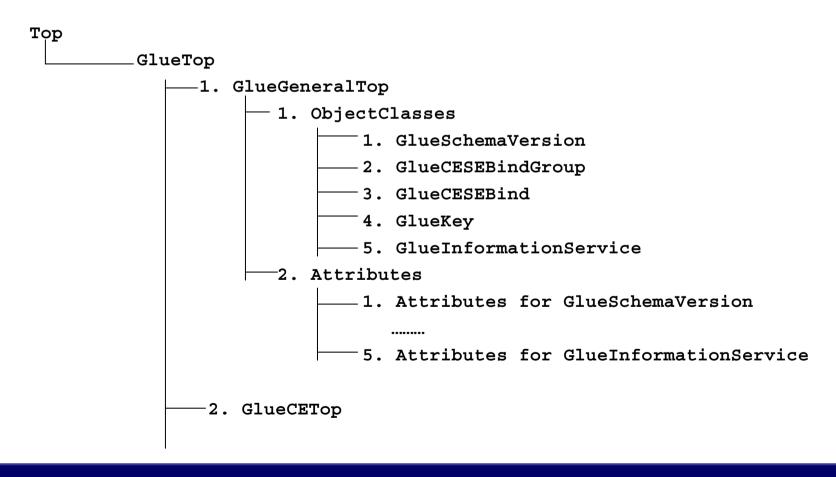
the DIT) c=Switzerland c=Spain c= US st = Geneva or = CERNou = FPou = ITid = pmlid=fd id=gv

### The LDAP Protocol: The Data Model



- ► The LDAP information model is based on entries
- ► These are <u>attribute</u> collections defined by a unique and global DN (Distinguished Name)
- ▶ Information is organized in a tree-like structure. A special attribute, objectclass, can be defined for each entry. It defines the classes tree corresponding to this entry. This attribute can be used to filter entries containing that object class
- ► The information is imported and exported from and to the LDAP server by LDIF files (LDAP Data Interchange Format)

```
dn: <distinguished name>
objectclass:<objectclassname>
<attributetype>:<attributevalue>
<attributetype>:<attributevalue>


dn: <distinguished name>
objectclass:<objectclassname>
<attributetype>:<attributevalue>
<attributetype>:<attributevalue>
<attributetype>:<attributevalue>
```

- ► Those fields delimited by <> can be defined by the application following a certain <a href="schema">schema</a>
- ► The schema describes the attributes and the types associated with the data objects

# The Glue Schema in EGEE/LCG: Design



- ♠ It describes the Grid resources information stored by the IS
- ♠ It follows the DIT hierarchical structure for objectclasses and attributes:



# Some examples of the Glue Schema (I)



### 1. Some General Attributes:

- m Base class (objectclass: GlueTop): No attributes
- ¤ Schema Version Number (objectclass: GlueSchemaVersion)
  - GlueSchemaVersionMajor: Major Schema Version Number
  - GlueSchemaVersionMinor: Minor Schema Version Number

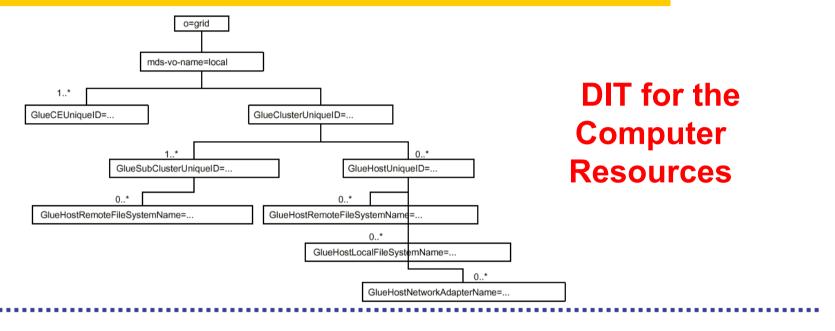
### 2. Attributes for the CE

- $\tt m$  Base Class for the CE information (objectclass: GlueCETop) : No attributes
- ¤ CE (objectclass: GlueCE)
  - GlueCEUniqueID: unique identifier for the CE
  - GlueCEName: human-readable name of the service
- ¤ CE Status (objectclass: GlueCEState)
  - GlueCEStateRunningJobs: number of running jobs
  - GlueCEStateWaitingJobs: number of jobs not running
  - GlueCEStateTotalJobs: total number of jobs (running + waiting)
  - GlueCEStateStatus: queue status: queueing (jobs accepted but not running), production (jobs accepted and run), closed (neither accepted nor run), draining (jobs not accepted but those already queued are running)
  - GlueCEStateWorstResponseTime: worst possible time between the submission of the job and the start of its execution

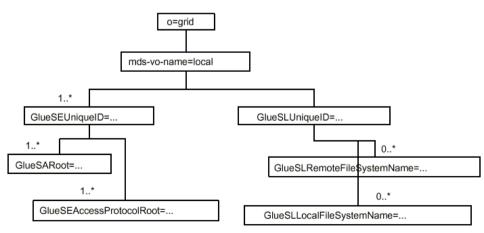
# Some examples of the Glue Schema (II)



# 3. Attributes for the SE


- ¤ Base Class (objectclass: GlueSETop): No attributes
- ¤ Architecture (objectclass: GlueSLArchitecture)
  - GlueSLArchitectureType: type of storage hardware (disk, tape, etc)
- ¤ Storage Service Access Protocol (objectclass: GlueSEAccessProtocol)
  - GlueSEAccessProtocolType: protocol type to access or transfer files
    - GlueSEAccessProtocolPort: port number for the protocol
    - GlueSEAccessProtocolVersion: protocol version
    - GlueSEAccessProtocolAccessTime: time to access a file using this protocol

## 4. Mixed Attributes


- - GlueCESEBindGroupCEUniqueID: unique ID for the CE
  - GlueCESEBindGroupSEUniqueID: unique ID for the SE

## The Glue Schema in EGEE/LCG: DIT





DIT for the Storage Resources



# How to handle the Information in an LDAP server



penLDAP is an open source implementation of LDAP protocol
 It provides CLI and C/C++ APIs to search, add, remove, modify entries in the directory. Synchronous and asynchronous operations are allowed
 APIs description:

http://www.openldap.org/software/man.cgi?query=ldap

¤ All these APIs have correspondent CLIs already included in the
distribution

- → Idapadd
- → Idapdelete
- → Idapmodify
- → Idapsearch

(Make a "man" to these commands to get more information)

¤ OpenLDAP includes also:

→ JLDAP: LDAP class libraries for Java

→ JDBC: LDAP-Java JDBC-LDAP Bridge Drive

### The use of the command lines in LDAP



# Idapsearch

```
Read port of the BDII

Read port of the BDII

Simple authentication

-H ldap://grid017.ct.infn.it:2170 \ Uniform resource identifier

-b `mds-vo-name=local,o=grid' \ Base DN for search

`(objectclass=GlueSE)' \ Filter

GlueSEUniqueID \ Attributes to be returned
```

(Make "man Idapsearch" to retrieve the whole set of options)

#### The Idapsearch Implementation in EGEE/LCG

Some wrappers of Idapsearch exist in LCG middleware, but they are not directly exposed to users

- → Part of the internal WMS software
- → Part of the Monitoring tools

# Idapsearch example in LCG



dn:GlueServiceURI=http://rlscert01.cern.ch:7777/cms/v.2.2/edg-local-replica-catalog/services/edg-local-replica-catalog/mds-vo-name=local.o=grid

objectclass: GlueTop objectClass: GlueService

objectClass: GlueSchemaVersion

GlueServiceURI: http://rlscert01.cern.ch:7777/cms/v2.2/edg-local-replica/catal

og/services/edg-local-replica-catalog

GlueServiceType: edg-local-replica-catalog

GlueServicePrimaryOwnerName: LCG

GlueServicePrimaryOwnerContact: mailto:hep-project-grid-cern-testbed-managers@

cern.ch

GlueServiceHostingOrganization: CERN

GlueServiceMajorversion: 1 GlueServiceMinorVersion: 0 GlueServicePatchVersion: 1

GlueServiceAccessControlRule: cms

GlueServiceInformationServiceURL: MDS2GRID:ldap://adc0002.cern.ch:2170/mds-vo-

name=local,mds-vo-name=local,o=grid

GlueServiceStatus: running GlueSchemaVersionMajor: 1 GlueSchemaVersionMinor: 1

### The use of the command lines in LDAP



## Idapadd, Idapmodify and Idapdelete in LCG-2

- LCG does NOT allow the use of these commands to create or modify information
- Several tools have been developed to include information in the servers
  - → They are not based on LDAP
  - → The query tools of LDAP can however retrieve this information

# Components of the IS: GRISs, GIISs and BDII



#### Abbreviations:

BDII: Berkeley DataBase Information Index

**GIIS**: Grid Index Information

Server

**GRIS**: Grid Resource

Information Server

Each site

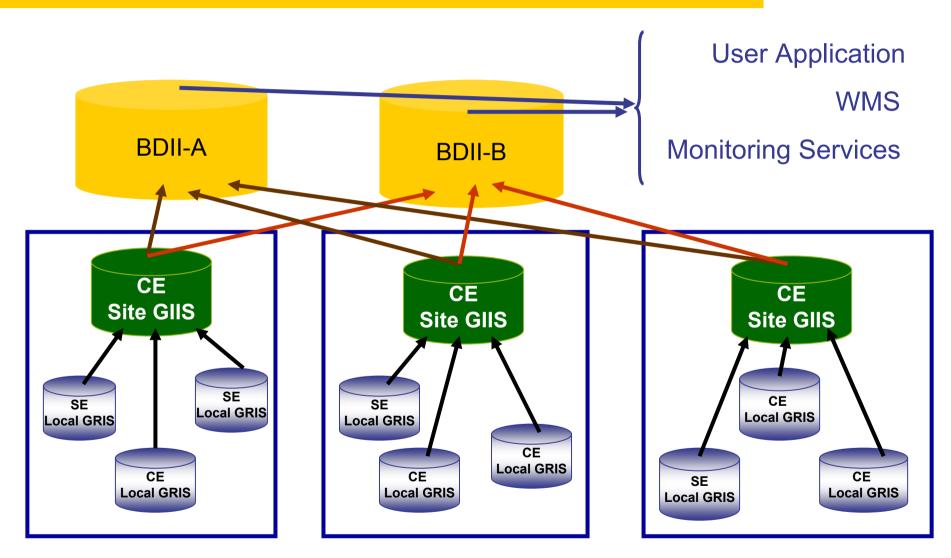
can run

a BDII. It

collects the information

coming from the GIISs

% Idapsearch –x –h <hostname


-p 2170 -b "o=grid"

At each site, a <u>site GIIS</u> collects the information given by the GRISs
% Idapsearch -x -h <hostname> -p 2135
-b "mds-vo-name=<name>,o=grid"

Local GRISes run on CEs and SEs at each site and report dynamic and static information
% Idapsearch –x –h <hostname> -p 2135
–b "mds-vo-name=local,o=grid"

# **GRISs, GIISs and BDII connections**





## The BDII



#### This is the information server directly invoked by users and services

- $\sqrt{}$  Because only those sites listed in the BDII really exist (it registers site GIISs)
- $\sqrt{}$  Because it provides information to the RB (to find resources)
- $\sqrt{\text{Because it is needed by the data management tools. The "lcg-utils" tools use it (see the Data Management talk)$
- $\sqrt{}$  Fundamental service to allow for stability (seen many times during the Alice DC for example). It is possible to define a hierarchy of Information Systems.
- $\sqrt{}$  Because it can be configured by each VO following its needs using global production configuration file distributed by CERN via AFS.

/afs/cern.ch/project/gd/www/gis/lcg2-bdii/<alice>

- → The VOs members and the LCG group have access to these files
- → Each VO decides where jobs should be executed independently of the rest of Grid Information System February 3, 2005 20

# Information Transfer between the IS Components



#### ► Lower level: GRIS

- Scripts and configuration files generate Idif files containing the information (for example, general information of the nodes)
- Other tools responsible of the dynamic information (for example, available and/or used space into a SE) – the so called information providers
- globus-mds runs such tools every few seconds. The system merges the dynamic information with the static one and register it to the local cache.

#### ► Medium level: local GIIS

Same procedure taking the information from the registered GRISes

#### ► High level: BDII

Publish the information of the site GIISes making a refresh every 2 minutes

#### ► An example: the Resource Broker

- This is a Grid service and publishes its information and status to the information system as described above (it is a server)
- However it uses a BDII for matchmaking purposes (it is a client)

# **Next slides: Tools based on LDAP**



```
User privileges

| lcg-is-search: C++ executable | lcg-infosites: Perl script. The next "edg-rm pi" | Implementation in the experiment software |
| Software installation privileges | lcg-ManageVOTag: Software tags publication |
| Site admin privileges | lcg-user-configuration: Information generation |
```

# **Information System Tools: User Level**



#### 1. You are a user with no privileges

- Using LDAP you cannot generate but just retrieve information (Idapsearch)
- Some C++ APIs and scripts have been developed to make this job easier

#### ▲ lcg-is-search



LDAP C++ API included in LCG-2 to retrieve information

- Why the need for this tool?
  - 1. API allows users to interrogate the IS from any application or services
  - 2. Better way of presenting the information (no way with Idapsearch)
- © Which kind of tools are installed? (rpm: lcg-info-api-ldap-1.1-1.4 included in Gilda testbed)
  - 1. A library (.so shared and .a static): <code>/opt/lcg/lib/liblcg-info-api-ldap</code>
  - 2. Headers: /opt/lcg/include/lcg-info-api-ldap/
  - 3. Several handy executables: lcg-is-search, lcg-infosites, ...
- Where do I find it?

WNs and UIs in /opt/lcg/bin

# lcg-is-search



#### Usage:

```
lcg-is-search -h <host> -f objectclass=<your_request> -a \
'<your attributes>'
```

#### CLI Application: <a href="Icg-infosites">Icg-infosites</a>

- This is a script which invokes lcg-is-search
- Already deployed in LCG-2 in the last release (version 2.2.3)
- It is intended to be the most complete information retriever for the user:

```
√ Once he arrives at the Grid (on UIs)
```

- $\sqrt{\text{To be used by the user applications (on WNs)}}$
- Several versions of this script have been included in the software packages of ATLAS and the monitoring services of Alice (MonAlisa)
- You do not need a proxy



# lcg-infosites



- > lcg-infosites --vo <your\_vo> feature --is <your\_bdii>
- It's mandatory to include the vo and the feature
- The —is option means the BDII you want to query. If not supplied, the BDII defined into the LCG\_GFAL\_INFOSYS will be interrogated

#### Features and descriptions:

| closeSE   | Names of the CEs where the user's VO is allowed to run together with their corresponding closest SEs |
|-----------|------------------------------------------------------------------------------------------------------|
| ce        | Number of CPUs, running and waiting jobs and names of the CEs                                        |
| se        | SEs names together with the available and used space                                                 |
| Irc (rmc) | Name of the Irc (rmc) for the user's VO                                                              |
| all       | It groups all the features just described                                                            |
| help      | Description of the script                                                                            |

# lcg-infosites: Examples (I)



> lcg-infosites --vo alice se --is lxb2006.cern.ch

|                                                | *********       |                          |  |  |  |  |  |
|------------------------------------------------|-----------------|--------------------------|--|--|--|--|--|
| These are the data for alice: (in terms of SE) |                 |                          |  |  |  |  |  |
| Avail Space (Kb)                               | Used Space (Kb) | SEs                      |  |  |  |  |  |
| 33948480                                       | 2024792         | se.prd.hp.com            |  |  |  |  |  |
| 506234244                                      | 62466684        | teras.sara.nl            |  |  |  |  |  |
| 1576747008                                     | 3439903232      | gridkap02.fzk.de         |  |  |  |  |  |
| 100000000000                                   | 50000000000     | castorgrid.cern.ch       |  |  |  |  |  |
| 304813432                                      | 133280412       | gw38.hep.ph.ic.ac.uk     |  |  |  |  |  |
| 651617160                                      | 205343480       | mu2.matrix.sara.nl       |  |  |  |  |  |
| 100000000000                                   | 100000000       | lcgads01.gridpp.rl.ac.uk |  |  |  |  |  |
| 415789676                                      | 242584960       | cclcgseli01.in2p3.fr     |  |  |  |  |  |
| 264925500                                      | 271929024       | se-a.ccc.ucl.ac.uk       |  |  |  |  |  |
| 668247380                                      | 5573396         | seitep.itep.ru           |  |  |  |  |  |
| 766258312                                      | 681359036       | t2-se-02.lnl.infn.it     |  |  |  |  |  |
| 660325800                                      | 1162928716      | tbn17.nikhef.nl          |  |  |  |  |  |
| 100000000000                                   | 100000000000    | castorftp.cnaf.infn.it   |  |  |  |  |  |
| 14031532                                       | 58352476        | lcgse01.gridpp.rl.ac.uk  |  |  |  |  |  |
| 1113085032                                     | 1034242456      | zeus03.cyf-kr.edu.pl     |  |  |  |  |  |
|                                                | []              |                          |  |  |  |  |  |
|                                                |                 |                          |  |  |  |  |  |

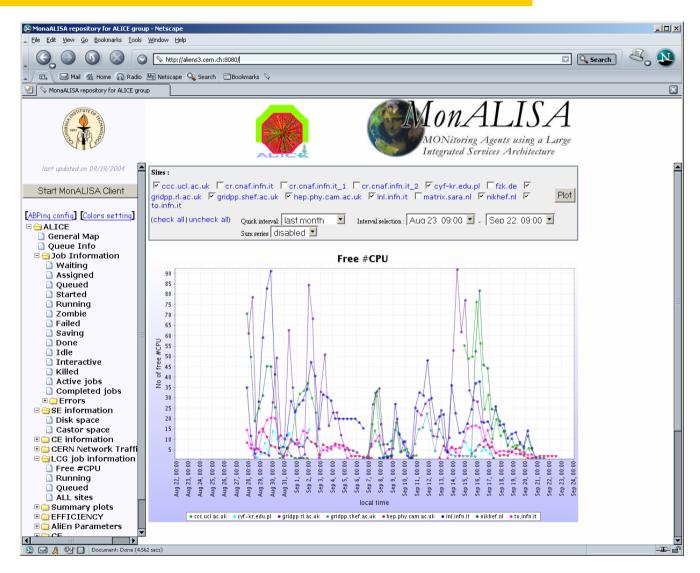
# lcg-infosites: Examples (II)



> lcg-infosites --vo alice ce --is lxb2006.cern.ch

# lcg-infosites: How does it work?




- lcg-is-search uses some ldapsearch wrappers designed by LCG to:
- Define the connections and basic relative operations (open and close the connections, checks whether it is established, etc)
- Query the database for the required information
- Iterate through all the Info buffer to retrieve the information
- An additional class (**InfoFromLDAP**) has been created to handle the LDAP wrappers in just one method include all the above operations in just one method:
- Then lcg-is-search implements this class
- lcg-infosites implements the lcg-is-search executable and prints the outputs following the experiments requirements

# **lcg-infosites**



Implementation in MonALISA:

The monitoring service of the Alice Experiment



# **Information System Tools: sgm Level**



# 2. You have application software administrator privileges You can publish application specific information

## 1. You can install the software of your VO

- ♠ Through special Grid tools, an application software administrator can submit Grid requests for software installation and validation
- ◆ Once the software has been installed and validated, a tag specifying the software version can be published in the information system to announce software availability at a site

# 2. You can publish a software tag corresponding to the software you have installed

- ♠ Via the script: lcg-ManageVOTag (UIs and WNs)
- ♠ The tag version is given as an argument to the script
- ♠ In case the user installs his software with his own tools, lcg-ManageVOtag can be independently used to publish the tag

# **Icg-ManageVOTag**



#### ▲ Icg-ManageVOTag

```
lcg-ManageVOTag -host <CE_host> -vo <your_vo> --feature -tag \
<your tag>
```

#### <u>Features:</u>

- √ add → It allows to join one or more tags each time (sgm privileges mandatory).
- √ remove → any tag can be deleted (sgm privileges mandatory).
- √ list → all tags included by the sgm can be visualized (all users from any VO can used this feature)

It's mandatory the tag follows the VO-<voname>-<your-information> syntax

```
> lcg-ManageVOTag -host lxb0706.cern.ch -vo dteam --add -tag VO-dteam-SFW1
```

lcg-ManageVOTag: VO-dteam-SFW1 submitted for addition by dteam to
GlueApplicationSoftwareRunTimeEnvironment

Glue Schema attribute which will be filled with the software tag

# Icg-ManageVOTag: How does it work?



- ► The first time this command is used from the UI or the WN, globus-url-copy will be used to create a /opt/edg/var/info/<vo>/<vo>.list file including the first tag(s) you include
- ► The rest of the times the file will just the file will not be recreated and will just hold the new tags
- ► The edg-ce-all (info producer into the CE ) will read the file and publish the info, setting the GlueApplicationSoftwareRunTimeEnvironment attribute value to the tags included in these files

Just interrogate the BDII or the GIIS:

```
ldapsearch -h lxb0705.cern.ch -p 2170 -x -b "o=grid" -LLL
    objectclass=GlueSubCluster GlueApplicationSoftwareRunTimeEnvironment
dn: GlueSubClusterUniqueID=lxb0706.cern.ch,GlueClusterUniqueID=lxb0706.cern.ch
, Mds-Vo-name=eis,mds-vo-name=local,o=grid
GlueHostApplicationSoftwareRunTimeenvironment: VO-dteam-SFW1
```

# Information System Tools: Administrator Level



#### 3. You have administrator privileges: You can produce the

© Now you can create easily static information via a interactive script included in the SEs and CEs:

/opt/lcg/libexec/lcg-user-configuration

experiment integration and support

# lcg-user-configuration: How does it work?



Just wait maximal 2 minutes to refresh the BDII. Your entry is there

→ Under /opt/lcg/var a **GlueService.Idif\$\$** has just been created. It has already a ldif syntax and contains your new entry

```
dn: GlueServiceURI=<your value>,Mds-Vo-name=local,o=grid
objectClass: GlueService
objectClass: GlueSchemaVersion
GlueServiceURI: <your value>
GlueServiceAccessPointURL: <your value>
GlueServiceType: <your value>
GlueServicePrimaryOwnerName: <your value>
GlueServicePrimaryOwnerContact: <your value>
GlueServicePrimaryHostingOrganization: <your value>
GlueServiceMajorVersion: <your value>
GlueServiceMinorVersion: <your value>
GlueServiceAccessControlRule: <your value>
GlueServiceInformationServiceURL: <your value>
GlueServiceStatus: <your value>
GlueSchemaVersionMajor: <your value>
GlueSchemaVersionMinor: <your value>
```

# lcg-user-configuration: How does it work? (cont.)



¤ The file /opt/lcg/var/lcg-info-generic-user.conf has been modified to include just one line:

The system script /opt/lcg/sbin/lcg-info-generic-config runs the new file lcg-info-generic-user.conf. This will include the new configuration

¤ The system script /opt/lcg/libexec/lcg-info-wrapper will run too

```
#!/bin/sh
/opt/lcg/libexec/lcg-info-generic /opt/lcg/var/lcg-info-generic-user.conf
/opt/lcg/libexec/lcg-info-user -file /opt/lcg/var/GlueService.ldif$$

New line

Always there
```

# R-GMA: New System



# Why a new protocol?

#### **Disadvantages of the old system:**

- ¤ LDAP does not allow to query information from different entries
- ¤ MDS is not flexible enough to allow for dynamic publication of data from user applications

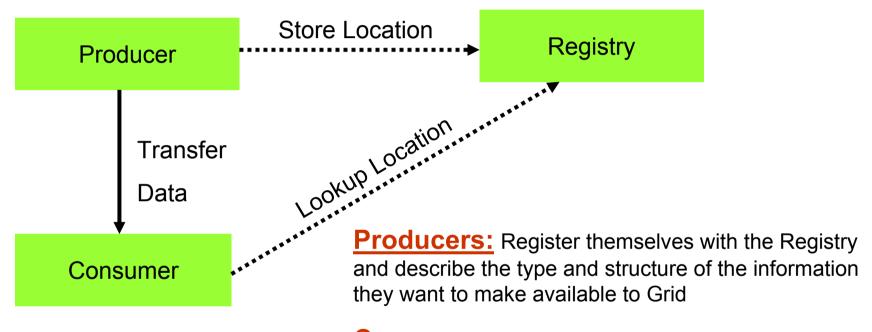
#### Advantages of the new system:

- ¤ R-GMA is quite flexible and allows cross queries between different entries
- ¤ Anyone can introduce new information in the system in a very easy way
- ¤ It is quite dynamic with new Producers of information being notified by existing Consumers

## **R-GMA:** Characteristics



#### **GMA (Grid Monitoring Architecture)**

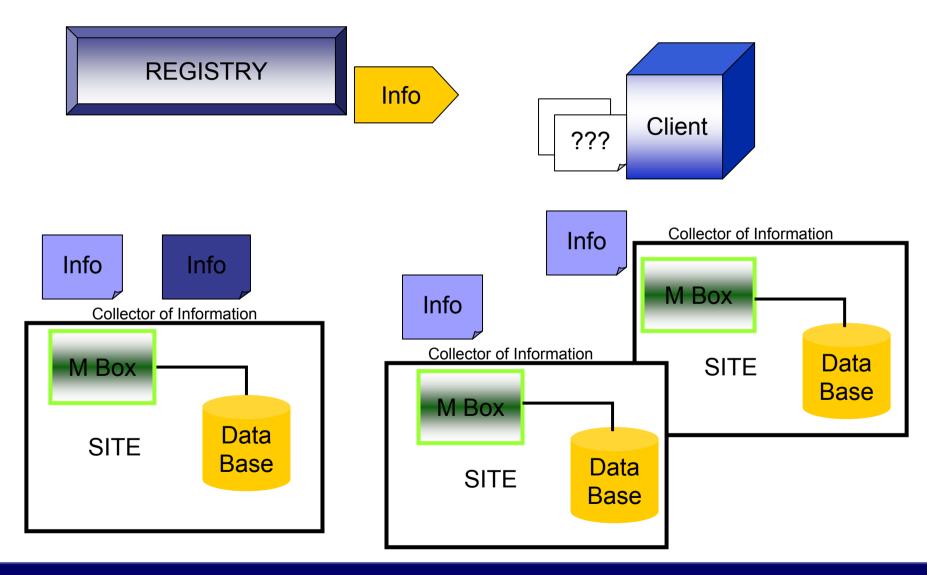

- From GGF (Global Grid Forum)
- Very simple; it does not define:
  - → Data model
  - → Data transfer mechanism
  - → Registry implementation

#### R-GMA (Relational GMA): Relational implementation

- Powerful data model and query language
- All data modeled as tables
- SQL as query language. It can express most queries in one expression
- You have a Relational DB for each VO

## **R-GMA** Architecture





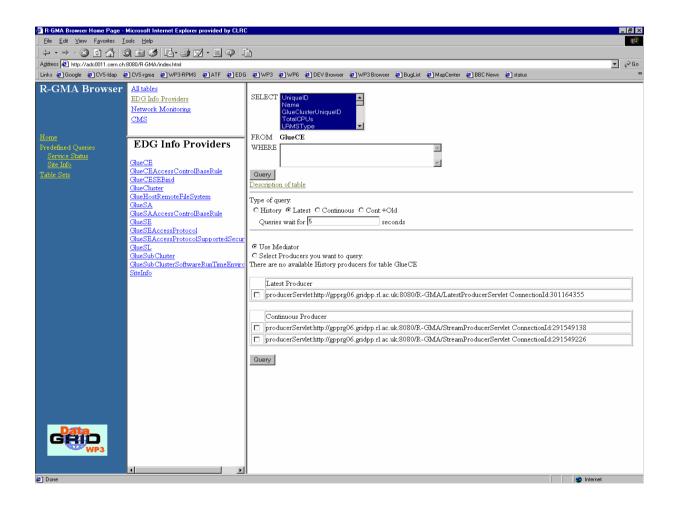

Consumers: Query the Registry to find out the information available and locate Producers which provide such information. They can connect directly the Producers

**Registry:** General collector, its arrow line represents the main flow of data

# R-GMA: Design






# R-GMA tools: Browser



The user can retrieve the R-GMA information via the browser servlet

http://lcgic01.grid pp.rl.ac.uk:8080/R-GMA/index.html

It shows the schema, the registered producers and allows simple queries



# edg-rgma: Virtual Database



- Recently set up in LCG-2/EGEE
- You can use it to produce or retrieve information
- Make edg-rgma -c help to retrieve more information



## **LCG Toolsfrom R-GMA**



▲ InfoFromRGMA: Parallel development to InfoFromLDAP

**♠ InfoTorgma:** You have the power, You create the information



- △ Both APIs implement the following classes included in the R-GMA package:
- © Consumer.hh
  - Executes a SQL guery to return tuples to the user
  - Able to find the producers of information
- ResultSet.hh
  - ¤ Handle the results strings
- **■** StreamProducer.hh
  - mation Register a table when it is created and subsequently to publish information

This tools have not been deployed and are used for testing the possible R-GMA features

## The future in LCG-2



- LDAP can be considered the past in LCG
- A new protocol has been deployed based on web services: R-GMA

#### **Problem:**

- Each protocol has its own schema, its own technology
- Users and developers have to adapt their software and applications to the new protocols

#### **Questions:**

- What to do with the already existing tools?
- What to do in the future to if a new protocol is arriving?



#### **Solution:**

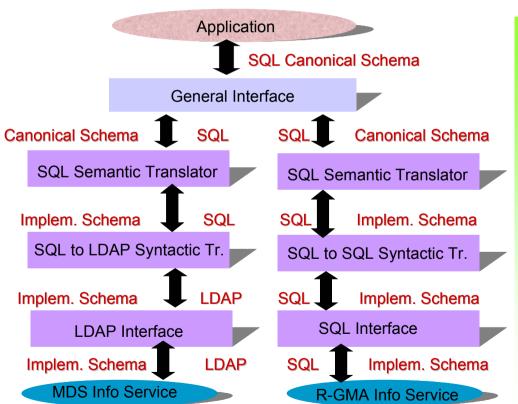
A new interface able to globalize all protocols with just one schema and just one query language

## **General Features of the Interface**



#### Characteristics:

- 1. The User Applications see just one interface
- 2. The query language and data model are included
- 4. The query and schema are syntactically and semantically translated internally in a transparent manner


#### User Requirements:

- 1. Perform the query via SQL
- 2. Configuration file to include the protocol and additional parameters mandatory for each protocol
- 3. Use the canonical schema

# **General Interface Tool**



#### General schema of the API



#### Some examples

```
SELECT StorageServiceUniqueID
ComputingElementUniqueID FROM Glue.Bind

lxb0707.cern.ch
lxb0706.cern.ch:2119/jobmanager-pbs-long

lxb0710.cern.ch
lxb0706.cern.ch:2119/jobmanager-pbs-long

lxb0707.cern.ch
lxb0706.cern.ch:2119/jobmanager-pbs-short

lxb0710.cern.ch
lxb0710.cern.ch
lxb0706.cern.ch:2119/jobmanager-pbs-short

castorgridtest.cern.ch
lxb0706.cern.ch:2119/jobmanager-pbs-long

oplapro12.cern.ch
lxb0706.cern.ch:2119/jobmanager-pbs-long
```

# Summary



- Two main Information System technologies are used in LCG-2
  - → **LDAP**: based on Globus
  - → **R-GMA:** developed by the European DataGrid project
- Both technologies provide a data model:
  - $\rightarrow$  **DIT:** In the case of LDAP
  - $\rightarrow$  **SQL:** In the case of R-GMA
- The **GLUE** schema is used to describe Grid resource related information in both cases. Both technologies have implemented it depending on their data models
- Different tools to retry and produce information have been developed in LCG-2 based on both technologies. These APIs are available in C, C++ and Java.
- User tools (mostly Perl scripts) based on these APIs are already deployed and are being used to retry information (based right now in LDAP)
- These tools and APIs will be explained and tested during the hands-on session