

Space Research Institute Graz Austrian Academy of Sciences

Exploring the Planets and Moons in our Solar System

Helmut O. Rucker

CERN, Geneve, June 2006

• The interplanetary medium, the solar wind and its interaction with magnetized planets

CERN, Geneve, June 2006

- The interplanetary medium, the solar wind and its interaction with magnetized planets
- Space missions to the outer planets

- The interplanetary medium, the solar wind and its interaction with magnetized planets
- Space missions to the outer planets
- Specific aspects of magnetospheric physics radio emission

- The interplanetary medium, the solar wind and its interaction with magnetized planets
- Space missions to the outer planets
- Specific aspects of magnetospheric physics radio emission
- Volcanoes and icy worlds

- The interplanetary medium, the solar wind and its interaction with magnetized planets
- Space missions to the outer planets
- Specific aspects of magnetospheric physics radio emission
- Volcanoes and icy worlds
- Space Missions to the terrestrial planets

CERN, Geneve, June 2006

Space Research Institute Graz Austrian Academy of Sciences

The interplanetary medium, the solar wind and its interaction with magnetized planets

Helmut O. Rucker

CERN, Geneve, June 2006

The central star of our solar system - the Sun

Mass loss by the expanding solar atmosphere, i.e. the solar wind: ~ 1 Mill. tons per second

→ Viewgraph: Helmet streamer

The solar wind = expanding atmosphere of the Sun highly conducting plasma, radially propagating (300 km/s < v < 2000 km/s)

The solar wind = expanding atmosphere of the Sun highly conducting plasma, radially propagating (300 km/s < v < 2000 km/s)

The interplanetary magnetic field is a solar magnetic field drawn out of the Sun by the highly conducting solar wind plasma. Due to the solar rotation a spiral structure is formed.

Parker spiral:

$$\tan \Psi = \frac{\omega_{sun}r}{v_{sw}}$$

$$\omega_{sun} = 2\pi / (25.38 \times 86,400s)$$

 $\omega_{sun} = 2.86 \times 10^{-6} s^{-1}$
 $v_{sw} = 450 km s^{-1}$

$$\psi(r = 1.0AU) = 43.6^{\circ}$$

 $\psi(r = 9.5AU) = 83.7^{\circ}$

At:	Angle:	Strength:
Mercury	21°	35 nT
Earth	45°	7 nT
Mars	56°	4 nT
Jupiter	80°	1 nT
Neptune	88°	0.2 nT

Solar wind average properties at r ~ 1 AU:

Proton density	$6.6 \ {\rm cm}^{-3}$
Electron density	$7.1 \ {\rm cm}^{-3}$
He^{2+} density	$0.25~\mathrm{cm}^{-3}$

Different types of solar wind (sw):

Fast sw:400 < v < 800 km/s, Helium 3 - 4 %Slow sw of minimum type:250 < v < 400 km/s, Helium < 2 %Slow sw of maximum type:250 < v < 400 km/s, Helium ~ 4 %Coronal mass ejections (CMEs):400 < v < 2000 km/s, Helium(++) ~ 30 %

Solar wind average properties at r ~ 1 AU:

Proton density Electron density He^{2+} density Flow speed (\sim radial) Proton temperature Electron temperature Magnetic field strength Sonic Mach number Alfvén Mach number Mean free path

 6.6 cm^{-3} $7.1 \ {\rm cm}^{-3}$ $0.25 \ {\rm cm}^{-3}$ $450 \rm \ km \ s^{-1}$ $1.2 \times 10^{5} {\rm K}$ $1.4 \times 10^5 \text{ K}$ 7 nT2 - 102 - 10 $\sim 1 \text{ AU}$

Dipole structure

$$\boldsymbol{B}_{\rm D} = -\mu_0 \, \boldsymbol{\nabla} \, \boldsymbol{\Phi}_{\rm D} = - \, \boldsymbol{\nabla} \, \frac{\mu_0 \, \boldsymbol{M} \cdot \boldsymbol{r}}{4 \, \pi r^3}$$
$$\mu_0 \, \boldsymbol{M} \quad 2 \cos \vartheta$$

$$(B_{\rm D})_r = -\frac{\mu_0 m}{4\pi} \cdot \frac{20000}{r^3}$$

$$(B_{\rm D})_{\vartheta} = -\frac{\mu_0 M}{4\pi} \cdot \frac{\sin\vartheta}{r^3}$$

$$(B_{\rm D})_{\phi} = 0$$

$$B(r, \vartheta) = \sqrt{B_r^2 + B_\vartheta^2}$$
$$B(r, \vartheta) = \frac{\mu_0 M}{4\pi r^3} \sqrt{1 + 3\cos^2 \vartheta}$$
$$B_{\text{Äquator}} = \frac{\mu_0 M}{4\pi r^3} = B_0 \left(\frac{r_{\text{E}}}{r}\right)^3$$

Interaction between the solar wind and planetary magnetic field

Interaction between the solar wind and planetary magnetic field

3D schematics of the terrestrial magnetosphere

Magnetotail cross section at r = 20 Re

Magnetic reconnection

Magnetic reconnection

Magnetic reconnection

1_{st} reconnection = start of the cycle

transport over the poles

2nd reconnection

Release of energy (the stretched configuration contains additional energy to accelerate plasma)

ejection of plasma into the magnetotail

returning of a « magnetic loop » back to the dayside

Inner-magnetospheric electric fields

Inner-magnetospheric particle drift paths and iso-potential lines, resp.

PLANETARY AURORAE

a fascinating phenomenon at and around the magnetic poles of magnetized planets

Earth Dynamic Explorer) UV - 130 nm (Courtesy . L. Frank) Jupiter HST-STIS UV - 150 nm (R. Prangé & L Pallier)

Saturn HST-STIS UV - 130 nm (R. Prangé & L Pallier)

PLANETARY AURORAE

a fascinating phenomenon at and around the magnetic poles of magnetized planets

11

4 1111.

2

1

8

6

9

LEGEND

- 1. Bow Shock
- 2. Deflected Solar Wind Particles
- 3. Magnetosheath
- 4. Incoming Solar Wind Particles
- 5. Polar Cusp
- 6. Van Allen Radiation Belts

7. Auroral Ovals

13

- 8. Atmosphere (0-100km)
- 9. Plasmasphere
- 10. Ionosphere (60-1000km)
- 11. Magnetotail

0

- 12. Plasma Sheet
- 13. Neutral Sheet

Magnetic field representation

$$B = -grad\Phi$$
$$\Phi = r_p \sum_{p=1}^{\infty} (r_p / r)^{n+1} \left\{ \sum_{p=1}^{n} P_p^m (\cos \theta) \left[g \right] \right\}$$

$$\Phi = r_p \sum_{n=1}^{\infty} (r_p / r)^{n+1} \left\{ \sum_{m=0}^{n} P_n^m (\cos \theta) \left[g_n^m \cos m\varphi + h_n^m \sin m\varphi \right] \right\}$$

- Φ magnetic potential
- r_p planetary radius

Q

- P_n^m Legendre polynom
- \mathcal{G} polar distance angle
- g_n^m, h_n^m spherical harmonic coefficients
- φ planetocentric longitude

Magnetic properties of the magnetized planets

		data and the second second second		1 A	
Planet (Radius in km)	Erde (6378)	Jupiter (71372)	Saturn (60330)	Uranus (25600)	Neptun (24765)
Modell	IGRF 85 ^a	O4	Z3	Q3	O8
g(1,0)	- 0.29877	+4.2180	+ 0.21535	+ 0.11893	+0.09732
g(1,1)	-0.01903	-0.6640	0	+0.11579	+0.03220
h(1,1)	+0.05497	+0.264	0	-0.15685	-0.09889
g(2,0)	-0.02073	-0.203	+0.01642	-0.06030	+0.07448
g(2,1)	+0.03045	-0.735	0	-0.12587	+0.00664
h(2,1)	-0.02191	-0.469	0	+0.06116	+0.11230
g(2,2)	+0.01691	+0.513	0	+0.00196	+0.04499
h(2,2)	-0.00309	+0.088	0	+0.04759	-0.00070
g(3,0)	+0.01300	-0.233	+0.02743	0	-0.06592
g(3,1)	-0.02208	-0.076	0	0	+0.04098
h(3,1)	-0.00312	-0.580	0	0	-0.03669
g(3,2)	+0.01244	+0.168	0	0	-0.03581
h(3,2)	+0.00284	+0.487	0	0	+0.01791
g(3,3)	+0.00835	-0.231	0	0	+0.00484
h(3,3)	-0.00296	- 0.294	0	0	-0.00770
Dipolmoment	$0.304 10^{-4} \mathrm{T} R_{\mathrm{F}}^{3}$	$\frac{3}{5}$ 4.28 10 ⁻⁴ T R_1^3	$0.215 10^{-4} \mathrm{T} R_{\mathrm{S}}^{3}$	$0.228 \ 10^{-4} \ \mathrm{T} R_{\mathrm{U}}^{3}$	$0.142 10^{-4} \mathrm{T} R_{\mathrm{N}}^{3}$
Dipolneigung	$+11.4^{\circ}$	- 9.6°	-0.0°	- 58.6°	-46.9°
OTD ^b	$0.08 R_{\rm F}$	$0.07 R_{I}$	$0.04 R_{\rm s}$	$0.31 R_{\rm U}$	$0.55 R_{\rm N}$
Äquatorneigung	23.45°	3.1°	26.7°	97.8°	28.8°

Classification of magnetospheric structures

	$ec{\Omega},ec{n}$	$ec{\Omega},ec{M}$
Earth	23.45°	11.4°
Jupiter	3.1°	9.6°
Saturn	26.7°	+/- 0°

"symmetrical" magnetospheres

Magnetic field of Jupiter

Classification of magnetospheric structures

Classification of magnetospheric structures

Neptune (1989)

+ 1/2 planetary rotation

	$ec{\Omega},ec{n}$	$ec{\Omega},ec{M}$
Uranus	97.8°	58.6°
Neptune	28.3°	46.9°

"oblique rotators"

"Advertisement" for tomorrow: Space missions to the outer planets

Saturn, as seen by Cassini

