New developments in the Geant4 geometry

Oliver Link, CERN / PH-SFT Applications Area meeting 7. December 2005

Development mainly oriented to

- A new Overlap checking facility
- Added 7 New Solids
- A new polynom root finder (release 7.1):
 The Jenkins-Traub Algorithm
- Accuracy test for Solids: SurfaceChecker
- Review of normal vectors for CSG Solids

A new Overlap checking facility

• Implementation of GetPointOnSurface() method for all CSG and most specific solids.

Overlap with mother

Overlap of daughters

Activation at volume construction for placements and parameterized volumes.

7 new solids

- G4TwistedBox
- G4TwistedTrd
- G4TwistedTrap
- G4TwistedTubs

- G4Ellipsoid
- G4EllipticalCone

- G4Tet

G4Tet and G4Para

G4Para(Name, fDx, fDy, fDz, α , θ , ϕ)

G4Tet(Name,p1,p2,p3,p4,flag)

G4Box and G4TwistedBox

G4Box(Name,fDx,fDy,fDz)

G4TwistedBox(Name, $\Delta \phi$,fDx,fDy,fDz)

G4Trd and G4TwistedTrd

G4TwistedTrd(Name, fDx_1 , fDx_2 , fDy_1 , fDy_2 , fDz, $\Delta \phi$)

2

G4Trd(Name,fDx1,fDx2,fDy1,fDy2,fDz)7. Dec 2005Oliver Link, CERN PH/SFT

G4Trap and G4TwistedTrap

G4TwistedTrap(Name, $\Delta \varphi$,fDz, θ , φ ,fDx₁,fDx₂,fDy₁,fDx₃,fDx₄,fDy₂, α)

2

G4Trap(Name,fDz,θ,φ,fDx1,fDx2,fDy1, α,fDx3,fDx4,fDy2,α)7. Dec 2005Oliver Link, CERN PH/SFT

A Twisted Face

Surface Equation

$$\vec{r}(u,z) = \vec{P} + t \cdot \vec{v}$$

The solution contains trigonometric terms which are approximated with Padé expansions. Polynom: 7th order. Solution: Jenkins-Traub

+ Planarity condition

Planarity condition

Polynomial Coefficients

A New Polynom Root Finder: Jenkins-Traub Algorithm

The Jenkins-Traub Algorithm

- Converges for any distribution of zeros
- Works for any real polynom
- Is fast compared to other algorithms
- Is used by Mathematica
- Available in HEPNumerics G4 module (G4JTPolynomialSolver)

Based on M.A.Jenkins and J.F. Traub. "*A three-stage algorithm for real polynoms using quadratic iteration.*" . SIAM Journal on Numerical Analysis, 7 (545-566)

G4Tubs and G4TwistedTubs

G4Tubs(Name, ri, ra, fDz, ϕ_s, ϕ_d)

G4TwistedTubs(Name, $\Delta \varphi$, ri, ra, fDz, ϕ_d)

2

Based on "Stereo Mini-jet Cells in a Cylindrical Drift Chamber" (hep-ex/0303014v1, K. Hoshina et al.) Oliver Link, CERN PH/SFT 13

G4Orb and G4Sphere

G4Orb(Name,r)

G4Sphere(Name, ri, ra, ϕ_s , ϕ_d , θ_s , θ_d)

G4Cons and G4EllipticalCone

G4EllipticalCone(Name,px,py,h,zcut)

3

G4Cons(Name, $r1_{min}$, $r1_{max}$, $r2_{min}$, $r2_{max}$, fDz, ϕ_s , ϕ_d)7. Dec 2005Oliver Link, CERN PH/SFT

D. Anninos (CERN, Cornell Univ.)

G4Hype and G4Ellipsoid

G4Hype(Name, ri, $ra, \alpha_i, \alpha_a, fDz$)

G4Ellipsoid(Name,px,py,pz,zcut1,zcut2)

2

7. Dec 2005

Oliver Link, CERN PH/SFT

G.Horton-Smith (Caltech) , G.Guerrieri (INFN Genova), D. Anninos (CERN, Cornell Univ.) 16

G4BREPSolidPolyhedra/PCone

5

G4BREPSolidPolyhedra(Name, ϕ_s ,

 ϕ_d , n_{sides} , n_{planes} , z_{start} , z_{values} , r_{min} , r_{max})

G4BREPSolidPCone(Name, ϕ_s ,

 ϕ_d , n_{planes} , z_{start} , z_{values} , \underline{r}_{\min} , \underline{r}_{\max})

G4Torus and G4EllipticalTube

G4Torus(Name, ri, ra, R, ϕ_s , ϕ_d)

G4EllipticalTube(Name,px,py,fDz)

Testing the Solids

With traditional tools

- test10: Optical photons geometry test
- SBT, fred: tests behavior of CSG solids and specific
- SolidsChecker: Optical photons geometry test

Direct call of DistanceToIn(), Inside(), SurfaceNormal() etc.

... and with a new testing tool

SurfaceChecker: Full tracking and Analysis

The SurfaceChecker

- 1. Generate a random particle position P
- 2. Generate a random point X^{true} on the surface of the solid.
- 3. Ask G4 tracking for the intersection point given the point P and its direction v

 \mathbf{X} reconst.

4. Automatic analysis: Select the intersection closest to Xtrue. This gives the distance δ

The distance δ between X^{true} and X^{reconst.} gives us information about the goodness of the reconstruction.

Results I

World size 10x10x10m³

Solid sizes L =10-50cm

Results II

- The δ -plot revealed a severe problem with G4Torus. (1% wrong)
- It was due to numerical inaccuracy of the method used in DistanceToIn/Out
- The G4Torus
 DistanceToIn/Out
 algorithm was rewritten
 with the Jenkins-Traub
 Root finder.

Results III

- With the new test suite we discovered a bug in G4Sphere
 - Only triggered in shells, not in half-spheres or full spheres.
 - Was dependent on the opening angle $\boldsymbol{\theta}$
- The cause was the conical surface.

Results IV

Review of Surface Normal

- Particle position on surface

- Take corner and edges into account

Important for **optical** processes

- Implementation of SurfaceNormal() has been done for most CSG solids.
 - Now included in 7.1
- Still remaining for specific solids and BREPS
- Performance impact?
 - Today loss of 10% per-call measured for method SurfaceNormal() of G4Box.

Development currently going on ...

- Design iteration for multiple/parallel navigators and propagation in field undergoing
- Importance Biasing and scoring
 - Coupled with multiple/parallel navigator
- Study to make tolerance tunable
 - Define formula for kCarTolerance dependent on the world size or make it explicitly tunable.
 - Define mechanism for checking and warning about unphysically small dimensions of solids.
- Optimized navigation in regular geometry structures (phantoms)

Summary

- New Overlap checking facility
- Added 7 new solids
- Added Jenkins-Traub Algorithm to solve high order polynoms
- New test SurfaceChecker for solids.
- Revision of surface normal

Padé Expansion

- The Padé approximation can be thought of as a generalization of a Taylor polynomial.
- More precisely, a Padé approximation of degree (m,k)to a function f(x) at a point x_0 is the rational function p(x)/q(x) where p(x) is a polynomial of degree m, q(x)is a polynomial of degree k
- Here is the Padé approximation of degree (2,4) to cos(x) at x=0:

$$\frac{1 - \frac{61 x^2}{150}}{1 + \frac{7 x^2}{75} + \frac{x^4}{200}}$$

