Flavour Violating Decays

of Supersymmetric Particles

Werner Porod

IFIC-CSIC Valencia

- Flavour violating decays of supersymmetric particles, MSSM
- Current implementation of flavour violation (including CP phases) in SPheno
- Future plans

Flavour violating SUSY decays

Off-diagonal entries in the soft SUSY breaking terms imply flavour violating decays such as:

$$\begin{array}{rcl}
\tilde{t}_i & \to & c \tilde{\chi}_k^0, \, s \tilde{\chi}_j^+ \\
\tilde{c}_i & \to & t \tilde{\chi}_k^0, \, b \tilde{\chi}_j^+ \\
\tilde{g} & \to & c \tilde{t}_i, \, t \tilde{c}_i \\
\tilde{\chi}_k^0 & \to & e \tilde{\mu}_i, \, \mu \tilde{\tau}_i
\end{array}$$

Despite stringent constraints from 'low' energy physics (rare decays of leptons and mesons, electric and magnetic moments of leptons): decays of SUSY particle with sizable flavour violating branching ratios are possible

Branching of $ilde{d}_1$

Variations around SPS1a, only mixing between 2nd and 3rd generation Werner Porod 3 CERN 31/01/05

 $ilde{\chi}^0_2
ightarrow ilde{l}_i l_j
ightarrow l_k l_j ilde{\chi}^0_1$

Variations around SPS1a

Implications for LHC

Decay chains like $\tilde{g} \to \tilde{b}_1 \bar{b} \to \tilde{\chi}_2^0 b \bar{b} \to \tilde{e}_R^- e^+ b \bar{b} \to \tilde{\chi}_1^0 e^+ e^- b \bar{b}$ are used to get masses of SUSY particles

Edge variables Magnitude changes only sightly: $\pm (1-2)$ % However, new combinations: $m_{ll}^{max} \rightarrow m_{e\mu}^{max} m_{e\tau}^{max} m_{\mu\tau}^{max}$ similarly for m_{llq}^{max} and m_{llq}^{min} Note: $BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 e^{\pm} \tau^{\mp})$, $BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \mu^{\pm} \tau^{\mp}) \simeq BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 e^{\pm} e^{\mp})$ or even larger

 \Rightarrow pairing of different lepton flavours necessary

Particularity of SPS1a

$$\begin{split} &\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}^{+} \nu_{\tau} \rightarrow \tau^{+} \nu \tilde{\chi}_{1}^{0} \\ \Rightarrow \text{ extremely difficult to detect if not impossible} \\ &\text{with LFV: } \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}_{1}^{+} \nu_{\tau} \rightarrow e^{+} \nu_{\tau} \tilde{\chi}_{1}^{0} \text{ or } \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}_{1}^{+} \nu_{\tau} \rightarrow \mu^{+} \nu_{\tau} \tilde{\chi}_{1}^{0} \\ & \text{ with } \mathsf{BR}(\tilde{\chi}_{1}^{+} \rightarrow l^{+} \nu \tilde{\chi}_{1}^{0}) \text{ up to } 15\%. \end{split}$$

SPheno, public version

- complete 2-loop SUSY RGEs
- complete 1-loop SUSY masses + 2-loop Higgs masses
- all 2-body decays of SUSY and Higgs particles at tree-level
- all 3-body decay modes of $\tilde{\chi}_k^0$, $\tilde{\chi}_j^\pm$, \tilde{g} , \tilde{t}_1
- decays into gravitino in case of GMSB models
- production of SUSY particles in e^+e^- annihilation

However, no generation mixing in the public version yetWerner Porod6CERN 31/01/05

SPheno, development version

Generation mixing and all complex phases are included in:

- complete 2-loop SUSY RGEs (including ν_R), several tests passed
- complete 1-loop SUSY masses, several tests passed
- all 2-body decays of SUSY and Higgs particles at tree-level, several tests passed
- all 3-body decay modes of $\tilde{\chi}_k^0$, $\tilde{\chi}_i^\pm$, \tilde{g} , \tilde{t}_1 , several tests passed
- production of SUSY particles in e^+e^- annihilation, several tests passed

 Higgs masses complete 1-loop formulas, in case of real parameters: 2-loop part implemented assuming that there is no generation mixing.

However: no mixing yet of h^0, H^0, A^0

- Low energy observables, several tests passed
 - 1. electric and magnetic moments of leptons: a_i , d_i , $[i = e, \mu, \tau]$
 - 2. rare lepton decays: $\mu \rightarrow e\gamma$, $\tau \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$

3.
$$b \rightarrow q\gamma$$
, $A_{CP}(b \rightarrow q\gamma)$ $[q = d, s]$

4.
$$B_q^0 \to \mu^+ \mu^- \ [q = d, s]$$

• Low energy observables, partly implemented

1.
$$\Delta M_{B_q^0}$$
, $(q = d, s)$: W^+ , H^+ , $\tilde{\chi}^+$ implemented, \tilde{g} , $\tilde{\chi}^0$ missing

Werner Porod

CERN 31/01/05

Input/Models

at M_Z : α , G_F , m_Z , α_s , m_f (f ... all SM fermion masses), CKMTwo possibilities: CKM stems either solely from left u-quarks or solely from left d-quarks

SUSY parameters

- mSUGRA, GMSB, AMSB, string inspired models: usual parameters but taking the effect of CKM into account in RGE running and mass calculation
 - at M_{GUT} : specification of all SUSY parameters is possible
- 2. all MSSM parameters at a user given scale $Q \leq 1$ TeV

Future plans

- Implementation of the mixing between h^0, H^0 and A^0
- link to FeynHiggs to get Higgs masses at 2-loop level for complex but generation diagonal parameters
- release of new version with complex but generation diagonal parameters end of June/beginning of July

- finish the implementation of $\Delta M_{B^0_a}$
- $b \to q \nu \nu$, $b \to q l^+ l^-$, [q = s, d], $s \to d \nu \nu$, $s \to d l^+ l^-$
- release of version including generation mixing: beginning 2006
- version with R-parity violating couplings/decays but no RGE running during 2nd half of 2005
- In parallel: proposals for SUSY Les Houches Accord including complex phases and generation mixing