
CP VIOLATION IN B DECAYS

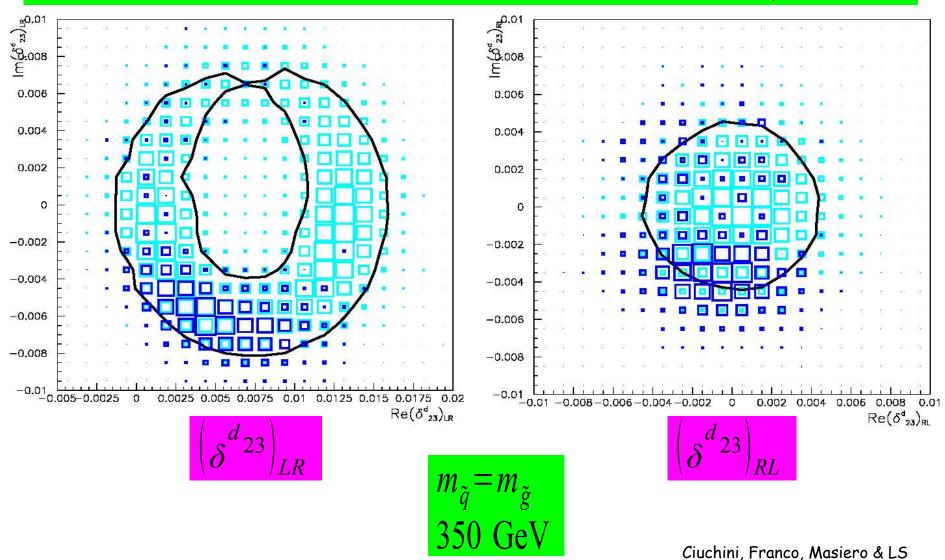
Luca Silvestrini INFN, Rome CERN, 31/1/2005

THE STARTING POINT

Determination of $\rho-\eta$ plane using only treelevel processes: 1) SM solution 2) Requires O(1) NP contributions to ε_{μ} and $B_{d} - \overline{B}_{d}$ mixing

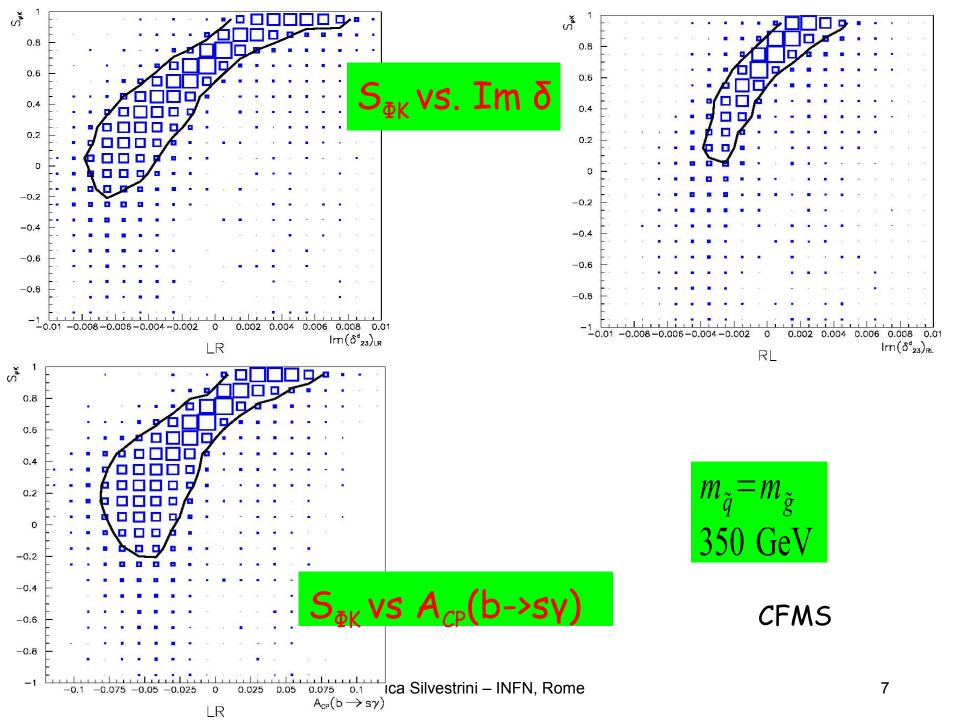
CERN, 31/1/05

CASE 1 - STANDARD UT

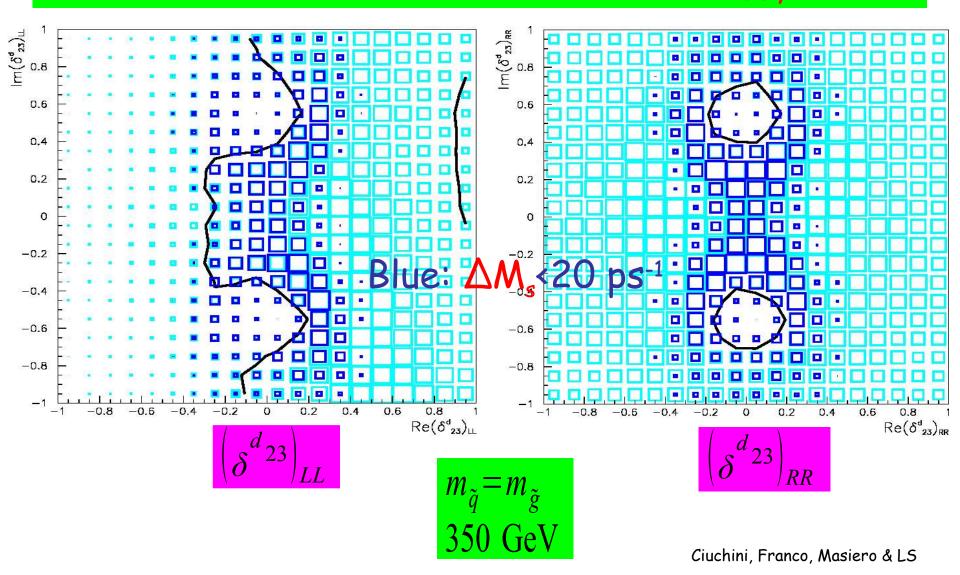

- SUSY contributions to K K and B_d B_d mixings at the level of 10 - 20 % of SM:
 a) MFV: could show up in B_s→μμ if tan β large enough and sparticles light enough
 b) small δ₁₂ and δ₁₃ but large δ₂₃
 - Nonabelian flavour symmetries
 - · GUT connections with neutrino physics & LFV

 \rightarrow Interesting phenomenology!

EFFECTS OF A LARGE δ_{23}

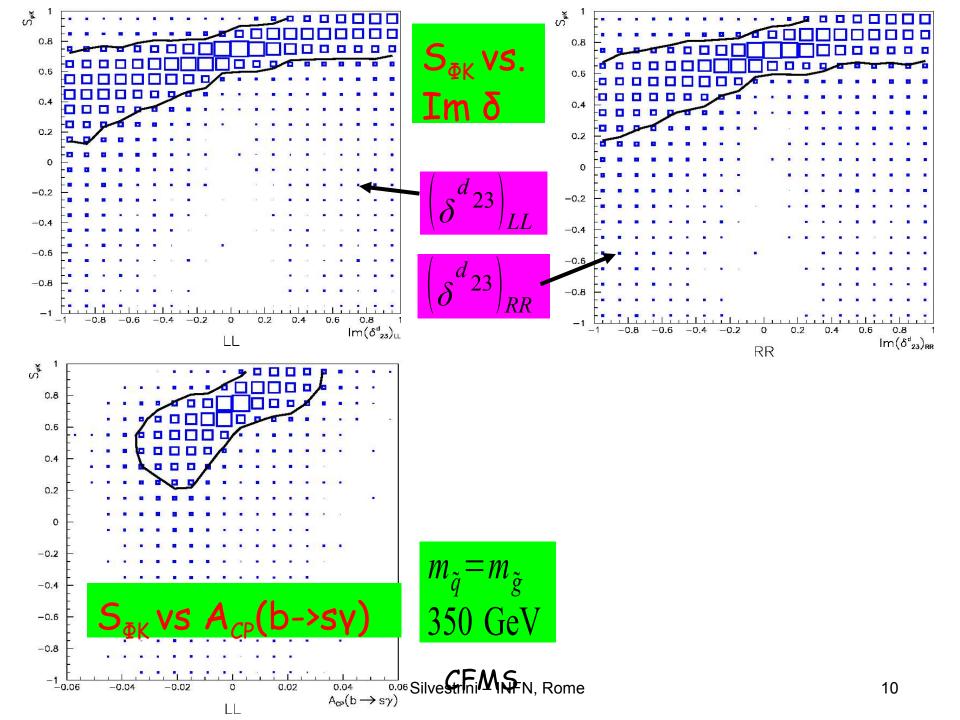

- In general, δ_{23} can show up in $\Delta B=2$ and/or $\Delta B=1$ processes, depending on chirality and sparticle masses:
 - $\Delta B=1$ most sensitive to $(\delta_{23})_{LR,RL}$ and large tan β (chromomagnetic penguins)
 - $\Delta B=2$ also sensitive to $(\delta_{23})_{LL,RR}$ and moderate/small tan β (boxes)

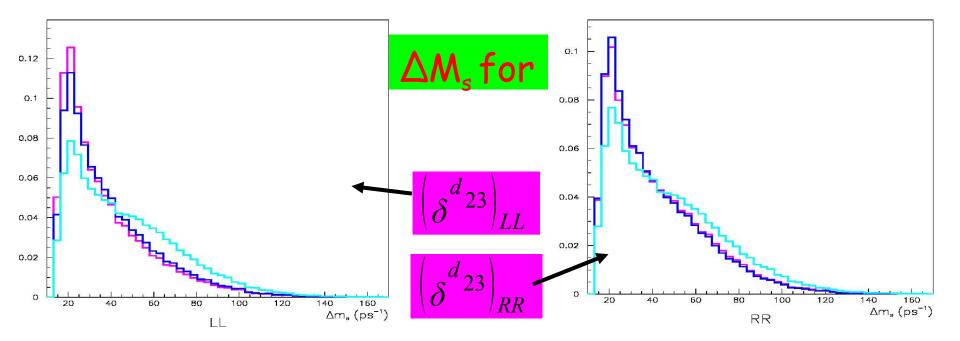
CONSTRAINTS ON $(\delta_{23})_{LR,RL}$

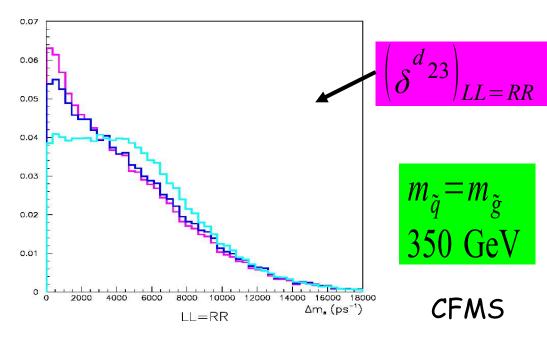


EFFECTS OF $(\delta_{23})_{LR,RL}$

- Abs $(\delta_{23})_{LR,RL}$ fixed by BR(b \rightarrow s γ), phase constrained by A_{CP} (b \rightarrow s γ). Effects
 - where this phase matters: $A_{CP}(b \rightarrow s \gamma)$, $A_{CP}(b \rightarrow s \gamma)$, $A_{CP}(b \rightarrow s \gamma)$, $A_{CP}(B_{d} \rightarrow K^{*}\gamma)$, $A_{CP}(B_{s} \rightarrow \phi\gamma)$, etc. Clean probes of $(\delta_{23})_{LR,RL}$
 - where chromomagnetic enters: $B_d \rightarrow \phi K$, $B_d \rightarrow \pi K$, $B_s \rightarrow \phi \phi$, $B_s \rightarrow KK$, etc. Affected by large hadronic uncertainties




CONSTRAINTS ON $(\delta_{23})_{LL,RR}$



EFFECTS OF $(\delta_{23})_{\text{LL,BR}}$

- For small or moderate tan β , Abs $(\delta_{23})_{\text{LL RR}}$ not fixed (only a lower bound from ΔM_c).
- Large effects possible in ΔM_{e} and $A_{CP}(B_{s} \rightarrow J/\psi\phi), A_{CP}(B_{s} \rightarrow D_{s}^{+} D_{s}^{-}), etc.$
- Effects in rare decays & penguins much less dramatic than LR/RL; however, for large tan β , fall back into LR/RL case CERN, 31/1/05

Look at the scale! Correspondingly, the phase of the mixing amplitude can be arbitrary

CERN, 31/1/05

CASE 2 - NONSTANDARD UT

- need SUSY contributions to K K and B_d - B_d mixings larger than the SM one:
 a) MFV impossible
 b) need:
 - $\cdot \text{ Im } (\delta_{12})_{LL}^{2} \sim 10^{-6} \text{ or Im } (\delta_{12})_{RR}^{2} \sim 10^{-6} \text{ or Im } (\delta_{12})_{RR}^{2} \sim 10^{-8} \text{ or Im } (\delta_{12})_{LR,RL}^{2} \sim 10^{-8} \text{ or Im } (\delta_{12})_{LR,RL}^{2} \sim 10^{-8} \text{ or Im } (\delta_{12})_{LR,RL}^{2} \sim 10^{-8} \text{ or Im } (\delta_{12})_{RR}^{2} \sim 10^{-8} \text{ or I$
 - $\cdot \ (\delta_{13})_{LL} \sim 10^{-1} \text{ or } (\delta_{13})_{RR} \sim 10^{-1} \text{ or } (\delta_{13})_{RR} \sim (\delta_{13})_{LL} \sim 10^{-2} \text{ or } (\delta_{13})_{LR,RL} \sim 10^{-2} \text{ or } (\delta_{13})_{LR} \sim$

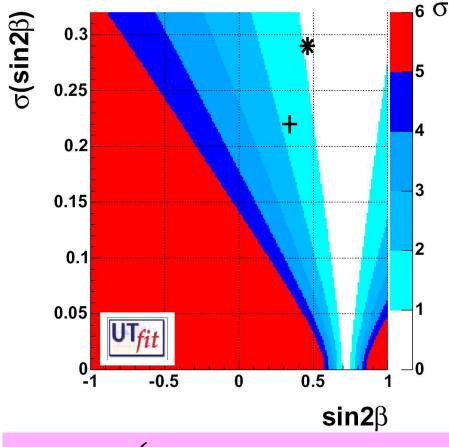
CASE 2 - LL/RR DOMINANCE

- If LL or RR terms do the job, then
 - no large effects to be expected in s \rightarrow d or b \rightarrow d transitions

- $(\delta_{23})_{LL,RR}$ expected to be small since one must have e.g. $(\delta_{23})_{LL} \times (\delta_{31})_{LL} \sim (\delta_{12})_{LL}$, so no effects expected in ΔM_s .

CASE 2 - LR/RL DOMINANCE

- If LR or RL terms do the job, then
 - large effects should be expected in $s \rightarrow d$ or $b \rightarrow d$ transitions ($\epsilon' / \epsilon, B_d \rightarrow \rho \gamma, B_s \rightarrow K^* \gamma,...$)
 - $(\delta_{23})_{LR,RL}$ could still saturate present bounds and produce signals in b \rightarrow s transitions


OUTLOOK

• If B-factories improve γ and do not confirm deviations from SM in $b \rightarrow s$ penguins, surprises from B₂ - B₂ mixing or from $B_{a} \rightarrow \mu\mu$ still possible (and well motivated by flavour models and/or GUTs)

OUTLOOK

- UT agreement might still be accidental: surprises in b → d penguins or rare K decays still possible
- If B-factories confirm deviations in b \rightarrow s penguins, rare & nonleptonic b \rightarrow s decays should be investigated in depth

$B \rightarrow \phi K_s$

+ = HFAG, * = SKEPTICAL

Need a model of hadronic dynamics to quantify uncertainty on sin 2β. Using charming penguins:

 $\sin 2\beta = \begin{cases} 0.34 \pm 0.20 \pm 0.08 & \text{from } S_{\phi K^0} = 0.34 \pm 0.20 & (\text{HFAG}) \\ 0.46 \pm 0.28 \pm 0.08 & \text{from } S_{\phi K^0} = 0.46 \pm 0.28 & (\text{skeptical}) \end{cases}$