Other aspects of K-decays

Giancarlo D'Ambrosio INFN-Sezione di Napoli

CERN, 31 January 05

CERN, 31 January 05

Topics

- Motivations
- CPT tests and improvements in Bell-Steinberger relation
- Charge asymmetries
- μ -Polarization in $K_L \rightarrow \mu \bar{\mu}$
- $\mu\text{-Polarization}$ in $K^+ \to \pi^0 \mu^+ \nu$
- Conclusions

Important K-physics still to be done

$|V_{us}|$: 2.2 σ 's discrepancy from unitarity reconciliated

•
$$\epsilon_{S,L} = \epsilon \mp \Delta$$
 $\Delta = \frac{\frac{1}{2} \left[M_{K^0} - M_{\bar{K}^0} - \frac{i}{2} \left(\Gamma_{K^0} - \Gamma_{\bar{K}^0} \right) \right]}{m_L - m_S + i(\Gamma_S - \Gamma_L)/2}$

•

- a (CPT conserving) b, d (CPT) semileptonic amplitudes
- Δ CPT in the mass
- $\delta_S \delta_L \propto \Re \Delta, \Re d^* \Longrightarrow$ accurate determination of δ_S required.

$$CPT$$
 in $K \to \pi\pi$

$$A(K^0 \to \pi \pi(I)) \equiv (A_I + B_I) e^{i\delta_I}$$
$$A(\bar{K^0} \to \pi \pi(I)) \equiv (A_I^* - B_I^*) e^{i\delta_I}$$

•
$$B_I$$
 is CPT as $(\eta_{+-}=|\eta_{+-}|e^{i\phi_{+-}} \eta_{00}=|\eta_{00}|e^{i\phi_{00}})$
 $\phi_{+-} - \phi_{00} = (0.22 \pm 0.45)^o$ KTEV,NA48
TH $\mathcal{O}(\epsilon'/\epsilon)$

Bell-Steinberger relation and CPT

• Even if CPT unitarity must be valid. Then $|K(t)\rangle = a_S|K_S\rangle + a_L|K_L\rangle$

$$-\frac{d}{dt}|\langle K(0)|K(0)\rangle|^2 = \sum_f |a_S A(K_S \to f) + a_L A(K_L \to f)|^2 \Longrightarrow$$

$$(1 + i \tan \varphi_{SW}) \left[\Re(\epsilon_M) - i \Im(\Delta) \right] = \sum_f \alpha_f$$

•
$$\alpha_f = B^S_{+-}\eta_{+-}, \ B^S_{00}\eta_{00}, \ B^S_{+-\gamma}\eta_{+-\gamma}, \ \frac{\tau_L}{\tau_S}B^L_{000}\eta_{000}, \dots$$

• $\varphi_{SW}, \ \epsilon_M, \ \alpha_{\pi\pi}, \ \alpha_{\pi\pi\gamma}, \ \alpha_{000} \Longrightarrow \Im(\Delta)$ Maiani, Thomson-Zou, KTEV, NA48

New Limits from NA48

- SM $B_{000}^S = 1.9 \cdot 10^{-9}$
- CPLEAR $(B_{000}^S < 1.4 \cdot 10^{-5}) \implies \Im(\Delta) = (4.5 \pm 5.0) \times 10^{-5}$
- NA48 $(B_{000}^S < 3 \cdot 10^{-7}) \implies \Im(\Delta) = (-1.2 \pm 3.0) \times 10^{-5}$ $\implies M_{K^0} - M_{\bar{K^0}} = (-1.7 \pm 4.2) \cdot 10^{-19} GeV$
- KLOE ($B_{000}^S < 2.1 \cdot 10^{-7}$) (preliminary)
- To further improve we have to determine better $\phi_{+-}-\phi_{00}$

- Dalitz distribution in X,Y $|A(K^{\pm} \rightarrow 3\pi)|^2 \sim 1 + g_{\pm} Y + j_{\pm} X$
- we can define the slope asymmetry $\Delta g/2g = (g_+ g_-)/(g_+ + g_-)$
- Isospin+rescattering: $A(K^+ \rightarrow \pi^+ \pi^+ \pi^-) = a e^{i\alpha_0} + b e^{i\beta_0} Y$

- $\mathcal{O}(p^4)$ necessary for the slopes $(\frac{\Delta a}{a} \sim \frac{\Delta b}{b} \sim 30\%)$ and for $\Delta g/2g \neq 0$ \Downarrow
- splitting $a = a^{(2)} + a^{(4)}$ and $b = b^{(2)} + b^{(4)}$ G.D.,Isidori,Paver

$$\frac{\Delta g}{2g} = \frac{\Im A^0}{\Re A^0} \quad (\alpha_0 - \beta_0) \left(\frac{\Re b^{(4)}}{\Re b^{(2)}} - \frac{\Im b^{(4)}}{\Im b^{(2)}} + \frac{\Im a^{(4)}}{\Im a^{(2)}} - \frac{\Re a^{(4)}}{\Re a^{(2)}}\right)$$

$$\left|\frac{\Im A^0}{\Re A^0}\right| \sim 22\epsilon' \sim 10^{-4} \qquad (\alpha_0 - \beta_0) \sim 0.1$$

- to maximize Δg , we take $\mathcal{O}(p^4)\sim \mathcal{O}(p^2)\Longrightarrow \Delta g/2g\leq 10^{-5}$

•
$$(-2.4 \pm 1.2) \cdot 10^{-5}$$
 Prades et al

New Physics to have large $\Delta g/2g$

- an operator which affects $K\to 3\pi$ but not $K\to 2\pi,$ limited by expt. size of ϵ'
- Actually Masiero- Murayama:new flavour structures to only the $\Delta S=1$ and not $\Delta S=2$

$$(\delta_{LR}^D)_{ij} = (M_D^2)_{i_L j_R} / m_{\tilde{q}}^2$$

• Through the gluino box diagram

$$C_g^{\pm}(m_{\tilde{g}}) = \frac{\pi \alpha_s(m_{\tilde{g}})}{m_{\tilde{g}}} \left[\left(\delta_{LR}^D \right)_{21} \pm \left(\delta_{LR}^D \right)_{12}^* \right] G_0(x_{gq})$$

$$\mathcal{H}_{\text{mag}} = C_g^+ Q_g^+ + C_g^- Q_g^- + \text{h.c.}$$

$$Q_g^{\pm} = \frac{g}{16\pi^2} \left(\bar{s}_L \sigma^{\mu\nu} t^a G^a_{\mu\nu} d_R \pm \bar{s}_R \sigma^{\mu\nu} t^a G^a_{\mu\nu} d_L \right)$$

•
$$Q_g^+$$
 is affects only $K \to 3\pi$; Q_g^- only $K \to 2\pi$

G.D, Isidori, Martinelli

- As a result by tuning properly C_g^{\pm} we can generate large $\Delta g/2g~(\leq 10^{-4})$
- NA48/2 will measure

$$\frac{\Delta g}{2g} \qquad \stackrel{\text{NA48}}{<} 10^{-4} \qquad \stackrel{\text{SM}}{<} 10^{-5} \qquad \stackrel{\text{PDG}}{<} 7 \cdot 10^{-3} \qquad \stackrel{\text{NP}}{<} 10^{-4}$$

$$K(p_K) \to \pi(p_1)\pi(p_2)\gamma(q)$$

• Lorentz + gauge invariance \Rightarrow Electric (E) and Magnetic(M) amplitude

$$A(K \to \pi \pi \gamma) = F^{\mu\nu} \left[E \partial_{\mu} K \partial_{\nu} \pi + M \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

• Unpolarizated photons

$$\frac{d^2\Gamma}{dz_1dz_2} \sim |E|^2 + |M|^2$$
$$|E^2| = |E_{IB}|^2 + 2Re(E_{IB}^*E_D) + |E_D|^2$$
$$\downarrow$$
Low Theorem $\Rightarrow E_{IB} \sim \frac{1}{E_{\gamma}^*} + c$
$$E_D, M \text{ chiral tests}$$

We need FIGHT DE/IB $\sim 10^{-3}$ IB DE_{exp} $< 9 \cdot 10^{-5}$ $K_S \to \pi^+ \pi^- \gamma$ 10^{-3} E1 $K^+ \to \pi^+ \pi^0 \gamma$ $\begin{array}{cc} 10^{-4} & (0.472 \pm 0.077) 10^{-5} \\ (\Delta I = \frac{3}{2}) & \text{E787} \end{array}$ M1, E1 $K_L \to \pi^+ \pi^- \gamma$ $\begin{array}{cc} 10^{-5} & (2.92 \pm 0.07) 10^{-5} \\ (\text{CPV}) & \text{KTeVnew} \end{array}$ M1,VMD

CPV is only from IB K_L (also measured in $K_L \rightarrow \pi^+ \pi^- e^+ e^-$) BUT IB suppressed in K^+ and K_L . $K^+ \rightarrow \pi^+ \pi^0 \gamma$: attempts to measure interf. *E*1 with *E*_{*IB*}

• E1 and M1 distinguished by Dalitz plot analysis.

$$\frac{\partial^2 \Gamma}{\partial T_c^* \partial W^2} = \frac{\partial^2 \Gamma_{IB}}{\partial T_c^* \partial W^2} \left[1 + \frac{m_{\pi^+}^2}{m_K} 2Re\left(\frac{E1}{eA}\right) W^2 + \frac{m_{\pi^+}^4}{m_K^2} \left(\left|\frac{E1}{eA}\right|^2 + \left|\frac{M1}{eA}\right|^2 \right) W^4 \right]$$

 $W^{2} = (q \cdot p_{K})(q \cdot p_{+})/(m_{\pi}^{2}m_{K}^{2}) \qquad A = A(K^{+} \to \pi^{+}\pi^{0})$

- E787 has measured $\operatorname{Re}\left(\frac{E1}{E_{IB}}\right) \sim (-0.4 \pm 1.6)\%$ (TH. expected)
- These Dalitz variables allow to select interf. E1 with E_{IB}

CP asymmetry

- In the asymmetry in the slope, $\frac{\partial^2 \Gamma^{\pm}}{\partial T_c^* \partial W^2}$ select a favourable kin. region (large W^2)
- This asymm., Ω , in extensions of SM $\sim \mathcal{O}(10^{-4})$ Colangelo et al.

•
$$\mathsf{SM} \le \mathcal{O}(10^{-5})$$
 Paver et al.

- Assuming the expts. are almost seeing the CP conserving E1 Statistics seems tough
- Similar analysis for CPV in K_L : but time interf. required

μ -Polarization in $K_L \rightarrow \mu \bar{\mu}$

•
$$P_L = \frac{N_R - N_L}{N_R + N_L} \stackrel{\text{SM}}{<} 2 \cdot 10^{-3}$$
 Herczek, Ecker and Pich

- Left-Right Models and leptoquark exchange may generate $P_L\sim \mathcal{O}(10^{-2},10^{-1})$ Hewett,Rizzo,Thomas

•
$$B(K_L \to \mu \bar{\mu}) = (7.27 \pm 0.14) \cdot 10^{-9}$$
 PDG

• E871 looked for $K_L \to \mu e$ and found also 6,200 $K_L \to \mu \bar{\mu}$, if instead optimized for $K_L \to \mu \bar{\mu}$ maybe 20,000 evts. $K_L \to \mu \bar{\mu}$ Diwan

μ -Polarization in $K^+ \rightarrow \pi^0 \mu^+ \nu$

- $\langle P_{\perp} \rangle \sim \langle \vec{s_{\mu}} \cdot (\vec{p_{\mu}} \times \vec{p_{\pi}}) \rangle$ is T-odd, \Longrightarrow CP violation
- FSI $\langle P_{\perp}
 angle \sim 10^{-6}$ Zhitniskii,Hiller-Isidori

$$M_{K_{\mu3}} = G_F \sin\theta_c f_+(q^2) [p_\alpha \overline{u_\mu} \gamma^\alpha (1 - \gamma_5) u_{\nu\mu} + f_s(q^2) m_\mu \overline{u_\mu} (1 - \gamma_5) u_{\nu\mu}]$$
$$\langle P_\perp \rangle \sim 0.2 \quad Im(f_s)$$

• Bounds on models $\langle P_{\perp} \rangle \leq 10^{-2}$ Peccei but interesting models (multi-Higgs, leptoquarks) $\langle P_{\perp} \rangle \sim 10^{-4}$ Garisto-Kane

• KEK E246
$$\langle P_{\perp} \rangle < 5 \cdot 10^{-3}$$

Conclusions

- Left-over:
 - μ -Polarization in $K^+ \to \pi^+ \mu^+ \mu^-$ and $K^+ \to \mu^+ \nu \gamma$ - $K_L \to \pi^+ \pi^- e^+ e^-$ - $K_L \to \mu e$
- Missing energy in the final states, $K^+ \to \pi^+ P$, Sgoldstino-like
- More on time interference
- Chiral tests