

SA1: Grid Operations and Management

Ian Bird, CERN

SA1 Activity Manager EGEE 2nd EU Review 6-7/12/2005

www.eu-egee.org

INFSO-RI-508833

Outline

- Scale and usage of infrastructure
- Grid Operations
 - Metrics, operations support
- Certification and deployment
- Pre-production Service
- User support
- Operational security
- Interoperability / interoperation
- Input to standards process
- LCG-2/gLite convergence
- Key points for SA1
- Plans for remainder of project

EGEE Grid Sites : November 2005

- > Many more sites than anticipated for this stage of project
 - 179 actual, cf. 50 proposed for end of year 2

BRAZIU

ANADA

- ~2000 CPU in sites outside of EGEE federations (7 countries)
- > Includes industrial partner sites (HP in Puerto Rico and UK)

> Exposes full complexity of grid operations - # sites not resources, nor # users

EGEE:	country	sites	country	sites	country	sites
	Austria	2	India	2	Russia	12
179 sites, 39 countries	Belgium	3	Ireland	15	Serbia	1
>17,000 processors,	Bulgaria	4	Israel	3	Singapore	1
~5 PB storage	Canada	7	Italy	25	Slovakia	4
	China	3	Japan	1	Slovenia	1
	Croatia	1	Korea	1	Spain	13
	Cyprus	1	Netherlands	3	Sweden	4
10 k	Czech Republic	2	Macedonia	1	Switzerland	1
	Denmark	1	Pakistan	2	Taipei	4
Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	France	8	Poland	5	Turkey	1
Total CPU 📕 Free CPU	Germany	10	Portugal	1	UK	22
otalop max: 20.45 k avg: 13.28 k cur: 0.00 k reecnu max: 10.49 k avg: 5.75 k cur: 0.00 k	Greece	6	Puerto Rico	1	USA	4
	Hungary	1	Romania	1	CERN	1

10,000 jobs /day

Some example uses

B 01.

1 0FS7

Sepe.

TRU M

DRIDVIER, Powered Kg R-SHI

E FAK

C28*

E HOH

11 R-L

TRULAN

INCED

0"HER

Enabling Grids for E-sciencE

LCG sustained data transfers using FTS; in excess of 500 MB/s

INFSO-RI-508833

GGGG

- SC3 Reliable base service most Tier-1s, some Tier-2s basic experiment software chain grid data throughput 500 MB/sec, including mass storage (~25% of the nominal final throughput for the proton period)
- SC4 All Tier-1s, major Tier-2s capable of supporting full experiment software chain inc. analysis sustain nominal final grid data throughput
- LHC Service in Operation September 2006 ramp up to full operational capacity by April 2007 capable of handling twice the nominal data throughput

INFS0-RI-508833

SA1: Operations Structure

Enabling Grids for E-sciencE

Regional Operations Centre Core Infrastructure Centre O GGUS **Operations Management Centre** 3

Operations Management Centre (OMC): - At CERN – coordination etc Core Infrastructure Centres (CIC) - Manage daily grid operations – oversight

- operations oversight, troubleshooting
 - "Operator on Duty"
- Run infrastructure services
- Provide 2nd level support to ROCs
- UK/I, Fr, It, CERN, Russia, Taipei

Regional Operations Centres (ROC)

- Front-line support for user and operations issues
- Provide local knowledge and adaptations
- One in each region many distributed

User Support Centre (GGUS)

 In FZK: provide single point of contact (service desk), portal

Operations Process

Enabling Grids for E-science

- CIC on duty (grid operator on duty)
 - Started November 2004
 - 6 teams working in weekly rotation
 - CERN, IN2P3, INFN, UK/I, Ru, Taipei
 - Crucial in improving site stability and management
- Operations coordination
 - Weekly operations meetings
 - Regular ROC, CIC managers meetings
 - Series of EGEE Operations Workshops
 - Nov 04, May 05, Sep 05
 - Last one was a joint workshop with Open Science Grid
 - These have been extremely useful
 - Will continue in Phase II
 - Bring in related infrastructure projects coordination point
 - Continue to arrange joint workshops with OSG (and others?)
- Geographically distributed responsibility for operations:
 - There is no "central" operation
 - Tools are developed/hosted at different sites:
 - GOC DB (RAL), SFT (CERN), GStat (Taipei), CIC Portal (Lyon)
- Procedures described in Operations Manual
- Improvement in site stability and reliability is due to:
 - CIC on duty oversight and strong follow-up
 - Site Functional Tests, Information System monitor

Operations tools: Dashboard

Enabling Grids for E-sciencE

- Many complementary monitoring tools, 2 important tools:
 - Site Functional Tests (SFT)
 - Information System monitor (GStat)
- Dashboard provides top level view of problems:
 - Integrated view of monitoring tools (summary) - shows only failures and assigned tickets
 - Detailed site view with table of open tickets and links to monitoring results
 - Single tool for ticket creation and notification emails with detailed problem categorisation and templates
 - Ticket browser with highlighting expired tickets

• Well maintained – is adapted quickly to new requirements/suggestions

Site Functional Tests

Enabling Grids for E-sciencE

- Site Functional Tests (SFT)
 - Framework to test services at all sites
 - Shows results matrix
 - Detailed test log available for troubleshooting and debugging
 - History of individual tests is kept
 - Can include VO-specific tests (e.g. sw environment)
 - SFT's have evolved to become stricter as lessons are learned
 - Normally >80% of sites pass SFTs
 - NB of 180 sites, some are not well managed
- Freedom of Choice tool (FCR)
 - Uses results of SFT
 - Allows apps to select good sites according to their criteria
 - Selection of "critical" tests for each VO to define which sites are good/bad
 - VO can select set of functional tests that it requires
 - Can white- or black-list sites
 - Operator can remove site from production
- SFT framework and FCR tool provide dynamic selection of "good" sites

- Very important in stabilising sites:
 - Apps use only good sites
 - Bad sites are automatically excluded
 - Sites work hard to fix problems

m (TC	Tab subsciencian failed		•	crl	CRL timestamp test
Test summary			12	Job submission failed	#f4876b		rm	Replica Management				
	SD	IL.	IS	СТ	OK	total	CT	Critical tests failed	#f9d48e	15	votag	VO Tag management
-	00	011				total	NT	Non-critical tests failed	# 60 600-	H	·	The second second
dteam	15	12	4	6	139	176		iton-cifical costs failed	#121986	L.	្វន	JOD SUDMISSION
lhcb	15	81	5	35	39	175	OK	OK	#b2f98e		bi	BrokerInfo
			-							1		

				VO dteam												VO lhcb			
	St. Site Name		Site CE		js	ver	wn	<u>ca</u>	<u>rgma</u>	bi	<u>csh</u>	<u>rm</u>	<u>votag</u>	<u>swdir</u>	<u>crl</u>	St.	js	dirac- test	
	AsiaPacific																		
1.	<u>CT</u>	INDIACMS-TIFR	ce.indiacms.res.in	<u>CT</u>	<u>0</u>	260	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	X	<u>0</u>	<u>0</u>	!!!	JL	X	??	
2.	<u>OK</u>	TW-NCUHEP	grid01.phy.ncu.edu.tw	<u>OK</u>	<u>0</u>	260	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	!!!	JL	X	??	
3.	<u>OK</u>	TOKYO-LCG2	dgce0.icepp.jp	<u>OK</u>	<u>0</u>	<u>240</u>	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	!!!	JL	X	??	
4.	<u>OK</u>	Taiwan-LCG2	lcg00125.grid.sinica.edu.tw	<u>OK</u>	<u>0</u>	<u>260</u>	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	!!!	JL	X	??	
5.	<u>ok</u>	<u>Taiwan-IPAS-</u> LCG2	testbed001.phys.sinica.edu.tw	<u>ok</u>	<u>0</u>	<u>260</u>	I	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>!!!</u>	JL	<u>x</u>	??	
6.	<u>OK</u>	GOG-Singapore	melon.ngpp.ngp.org.sg	<u>OK</u>	<u>0</u>	<u>260</u>	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	!!!	JL	<u>X</u>	??	
7.	<u>ok</u>	<u>Taiwan-NCUCC-</u> LCG2	<u>ce.cc.ncu.edu.tw</u>	<u>ok</u>	<u>0</u>	<u>260</u>	I	<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u></u>	<u>ok</u>	<u>0</u>	<u>0</u>	
8.	<u>OK</u>	LCG KNU	cluster50.knu.ac.kr	<u>OK</u>	<u>0</u>	<u>250</u>	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>!!!</u>	<u>CT</u>	<u>0</u>	<u>III</u>	
		BNL																	
9.	<u>SD</u>	BNL-LCG2	lcg-ce01.usatlas.bnl.gov	<u>SD</u>	x	??	??	? ?	??	? ?	??	??	??	??	??	<u>SD</u>	x	??	
	Canada																		
10.	JΓ	TORONTO-LCG2	bigmac-lcg- ce.physics.utoronto.ca	JГ	x	<u>260</u>	I	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	w	<u>0</u>	<u>!!!</u>	<u>ok</u>	<u>0</u>	<u>0</u>	
11.	<u>SD</u>	CARLETONU- LCG2	lcg02.physics.carleton.ca	<u>SD</u>	x	??	??	? ?	??	? ?	??	??	??	??	??	<u>SD</u>	x	??	
12.	<u>OK</u>	TRIUMF-LCG2	lcgce01.triumf.ca	<u>OK</u>	<u>0</u>	260	Ι	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>OK</u>	<u>0</u>	<u>0</u>	
13.	<u>OK</u>	Umontreal-LCG2	lcg-ce.lps.umontreal.ca	<u>OK</u>	<u>0</u>	<u>260</u>	Ι	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	W	<u>0</u>	!!!	<u>OK</u>	<u>0</u>	<u>0</u>	
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1																

2nd Review; 6-7^m December, 2005

10

Monitoring Integration in R-GMA

Enabling Grids for E-sciencE

- R-GMA is used as the "universal bus" for monitoring information
- SFT and GStat both publish results to R-GMA using common schema
- GOC DB source of:
 - Sites and nodes to monitor,
 - Status (downtime, etc.)
- Scalability:
 - Currently >170 sites
 - About 3.5M tuples for 1 month history with full detail
 - After one month only summary information
- Aggregate views →
 - Dashboard, high level monitors
 - Eventually automated alarms
- Summary information
 - Generate metrics: site availability
- Framework longer term
 - Include results from various tools
 - Aggregate the disparate data
 - Generate alarms

Evolution of SFT metric

Service measurement – extending the metrics

CALCE Service Enabling Grids for E-science

INFS

Service	Class	Comment	
SRM 2.1	С	Monitoring of SE	
LFC	C/H		
FTS	С	Base on SC experience	
CE	С	Monitored by SFT now	
RB	С	Job monitor exists	
Top level BDII	С	Can be included in Gstat	
Site BDII	Н	Monitored by Gstat	
MyProxy	С		
VOMS	Н		
R-GMA	Н	Effort identified in various ROO	Cs to provide
C: Critical service H: High availabilit	y	availability tests for each servi Will all be integrated into SFT First approach to SLA:	ramework
H: High availabilit	y	 Will all be integrated into SFT First approach to SLA: each Class (C, H, etc) defines require 	framework

Checklist for a new service

Enabling Grids for E-sciencE

User support procedures (GGUS) ٠ **First level support procedures** • Troubleshooting guides + FAQs How to start/stop/restart service User guides How to check it's up **Operations Team Training** ٠ Which logs are useful to send to Site admins **CIC/Developers CIC** personnel and where they are GGUS personnel Mon > This is what is takes to make a reliable production service ٠ from a middleware component Accd ٠ > Not much middleware is delivered with all this ... yet Service rarameters Tools for CIC to spot problems Scope - Global/Local/Regional GIIS monitor validation rules (e.g. only one SI As "global" component) Impact of service outage Definition of normal behaviour Security implications Metrics **Contact Info** • **CIC Dashboard** Developers Alarms - Support Contact **Deployment Info** Escalation procedure to developers - RPM list Interoperation • Configuration details **Documented** issues Security audit

- Deployment process has improved significantly:
 - Significant effort to improve the deployment process better separation of functional improvements from critical updates
 - Simplified installation and configuration tools made life much simpler for administrators
 - Wider deployment testing before release; also pre-production
 - GGUS coordinates problem follow up

• Certification:

- Increased effort was identified (UK, INFN) to address lack of testing of new gLite components
- Parallel processes to speed up gLite testing:
 - Production certification
 - "pure" gLite certification
 - Mixed (LCG-2.x + gLite) \rightarrow this will become primary strategy
- gLite 1.4.1 is being certified now

Enabling Grids for E-science

Lessons from Deployment

Enabling Grids for E-science

- Goals: (tension between ...)
 - Applications: Rapid updates new functionality, bug fixes
 - Sites: Fixed schedules to ensure good planning and response
 - Deployment team: Sufficient certification and testing to ensure quality
 - Rapid reaction by sites to new releases is desired by applications and deployment team
- Lessons learned

6666

- EGEE production service is a grid of independent federations
 - ROCs schedule upgrades in their region
 - New releases need a few months to reach 80% site deployment
- Early announcement of new releases needed
 - To allow time for external deployment testing (\rightarrow p-ps)
- Release definition non-trivial with 3 months intervals
 - Closing door for changes is almost impossible
- Certification Tests need to be extended (performance tests)
- Patches have to come with a standard set of information
 - Ports, variables, config changes …
- Updates work quite well
- Now: Integrate JRA1 and SA1 processes
 - Take into account the experiences gained over past 4 years
 - Ensure (TCG) priorities are driven by the applications

Pre-production service

Enabling Grids for E-sciencE

- Current P-PS is a "pure" gLite service
 - BDII, SRM SE and MyProxy server are also needed.

• The P-PS is available and used by many VOs

- HEP VOs (CMS, ATLAS, Alice, LHCb)
- ARDA
- BioMed
- egeode
- NA4 (testing)
- DILIGENT
- SWITCH
- Currently upgrading from gLite 1.4 to gLite 1.4.1 (a major patch)
 - As the service is now in use, upgrades are planned and phased to minimize the impact to users.
- Currently preparing to move the day-to-day operations of the P-PS to the production operations team
 - SFT monitoring is now in place
 - All P-PS sites are now correctly entered in the GOC database
 - Production operation processes are being implemented for the P-PS
- Planning is under way for moving the P-PS from being a pure gLite service to being a true pre-production service which closely mirrors production

P-PS: Resources

Enabling Grids for E-sciencE

ROC	Site	CPUs	SE	Core Services						
Asia-Pacific	ASGC	0		WMS						
CE	CYFRONET	3								
CERN	CERN	54	DPM	WMS	FTS	VOMS (production)			
DE/CH	FZK	2								
France	IN2P3	4			FTS	VOMS				
Italy	CNAF	150	DPM	WMS		VOMS	BDII			
Italy	INFN-Padova	100								
NE	NIKHEF	0				VOMS				
SEE	UoM	2								
SEE	UPATRAS	3		WMS						
SWE	CESGA	2					R-GMA			
SWE	IFIC	1	Castor							
SWE	LIP	2	DPM				MyProxy			
SWE	PIC	180	Castor	WMS			FireMan			
UK/I	ScotGrid-Glasgow	0			FTS					

- PIC, CNAF, Padova and CERN have given access to production batch farms
 - PIC, Padova and CNAF running LCG WNs; CERN running gLite WNs.
 - CERN: queue to production batch farm is currently restricted to 50 jobs. This restriction can be removed, increasing the number of CPUs at CERN to ~1,500.
- To date, over 1.5 million jobs have been submitted to the P-PS WMSs.

INFSO-RI-508833

• User Support in EGEE (helpdesk, call-centre)

Enabling Grids for E-sciencE

- Regional support with central coordination (GGUS @ FZK)
- GGUS platform connects:
 - CICs, ROCs, VOs, service teams providing support
 - Middleware developers and support
 - Networking activities (training etc).
- Ticket Process Managers oversee problem lifecycle
 - Ensure problems assigned and followed up
 - Problem resolution by volunteer experts harness informal processes
- Users can report via local helpdesks, ROC helpdesk, VO helpdesk, or to GGUS
- Ticket traffic increasing
 - Now: Change in users from a few, experienced, production managers to general users (low quality of tickets)
- VO support

Gece

- Other aspect of user support direct support to apps to integrate with grid middleware
- Application driven process: set up several task forces to implement this (follow successful model in LCG)

User Support – GGUS

GGUS Portal: user services

Enabling Grids for E-sciencE

Security Policy

- Policy Revision In Progress/Completed
- Grid Acceptable Use Policy (AUP)
 - https://edms.cern.ch/document/428036/
 - common, general and simple AUP
 - for all VO members using many Grid infrastructures
 - EGEE, OSG, SEE-GRID, DEISA, national Grids...
 - VO Security
 - https://edms.cern.ch/document/573348/
 - responsibilities for VO managers and members
 - VO AUP to tie members to Grid AUP accepted at registration
 - Incident Handling and Response
 - https://edms.cern.ch/document/428035/
 - defines basic communications paths
 - defines requirements (MUSTs) for IR
 - reporting
 - response
 - protection of data
 - analysis
 - not to replace or interfere with local response plans

- EGEE with strong input from OSG
- Policy Set:

Operational Security Coordination Enabling Grids for E-science Team (OSCT)

• OSCT membership → ROC security contacts

- What it is not:
 - Not focused on middleware security architecture
 - Not focused on vulnerabilities (see Vulnerabilities Group)
- Focus on Incident Response Coordination
 - Assume it's broken, how do we respond?
 - Planning and Tracking
- Focus on 'Best Practice'
 - Advice
 - Monitoring
 - Analysis
- Coordinators for each EGEE ROC
 - plus OSG LCG Tier 1 + Taipei

Vulnerability Group

- Has been set up this summer (CCLRC lead)
- Purpose: inform developers, operations, site managers of vulnerabilities as they are identified and encourage them to produce fixes or to reduce their impact
- Set up (private!) database of vulnerabilities
 - To inform sites and developers
- Urgent action \rightarrow OSCT to manage
- After reaction time (45 days)
 - Vulnerability and risk analysis given to OSCT to define action publication?
 - Will not publish vulnerabilities with no solution
- Intend to report progress and statistics on vulnerabilities by middleware component and response of developers
- Balance between open responsible public disclosure and creating security issues with precipitous publication

Interoperability

- EGEE OSG:
 - Job submission demonstrated in both directions
 - Done in a sustainable manner
 - EGEE BDII and GIP deployed at OSG sites
 - Will also go into VDT
 - EGEE client tools installed by a grid job on OSG sites
 - Small fixes to job managers to set up environment correctly
- EGEE ARC:
 - 2 workshops held (September, November) to agree strategy and tasks
 - Longer term: want to agree standard interfaces to grid services
 - Short term:
 - EGEE \rightarrow ARC: Try to use Condor component that talks to ARC CE
 - ARC→EGEE: discussions with EGEE WMS developers to understand where to interface
 - Default solution: NDGF acts as a gateway

- Goal: to improve level of "round-the-clock" operational coverage
- OSG have been to all of the EGEE operations workshops
 - Latest was arranged as a joint workshop
- Can we share operational oversight?
 - Gain more coverage (2 shifts/day)
- Share monitoring tools and experience
 - Site Functional tests (SFT)
 - Common application environment tests
 - Work on common schema for monitoring data started
- User support workflows interface
- Strong interest from both sides
- Now: Write a short proposal of what we can do together
 - Both EGEE and OSG have effort to work on this
- Follow up in future operations workshops

Standards & SA1

Enabling Grids for E-sciencE

- Interoperation and interoperability
 - De-facto standards common understandings/interfaces
 - GT2, GSI, SRM, BDII/GIP (MDS), ...
 - Agreement on schema:
 - GLUE 1.2/GLUE 2.0; GGF Usage record for accounting
 - GLUE 2.0 will unify EGEE, OSG, ARC information schema
 - Consider: common operations and job monitoring schema
- Top-down vs bottom-up standards must keep a balance in production
 - What is working now (SRM, GLUE) vs what will help in future
 - Must maintain production service while introducing new components that apply standards → slow
- Operations:
 - SA1 "Cookbook": summary of choices and experience deploying EGEE → intend to publish to GGF production grids
 - All aspects of operational security are very much collaborative with OSG and others (and very active in GGF)
 - Integration and certification is hard standard interfaces and protocols should help
- Operations Workshops
 - Open to related infrastructure projects (EELA, EUMedGrid, SEE-Grid, ... OSG, etc.)
 - Provide practical standardisation forum for which no equivalent in GGF as yet
- SC05 Interoperability discussions
 - Integrate bi-lateral interoperability work
 - EGEE/SA1 will contribute its work and experiences

- Enabling Grids for E-sciencE
- The current production middleware ("LCG-2") is stable and is daily heavily used
 - This has to be maintained as new components are added or components replaced
 - This will always be the case there will always be new or better services coming
 - Thus, the production distribution must evolve in a controlled way that does not break existing applications but that adds new, or improves existing, functionality
- There is a strong and reliable process in place
 - Integration, testing, certification, pre-production, production
 - Process constantly evaluated and improved
 - All significant components of gLite 1.4 are either in production (R-GMA, VOMS, FTS) ...
 - ... or on the pre-production service (CE, WMS, Fireman, gliteIO)
 - Anticipate these being available in production distributions (alongside existing components at first) by mid-2006 (many sooner)
- The current LCG and gLite middleware will converge to a single <u>distribution</u> called gLite in early 2006
- Should not expect (or desire!) a big-bang switch to gLite (or anything else)
- Deploying in production any new software is a slow and time-consuming process, this lesson has been learned many times

eGee

SA1: Key points

Enabling Grids for E-sciencE

- Accomplishments:
 - SA1 is operating world's largest grid infrastructure for science
 - Significant resources available
 - In use by many real production applications
 - 10K jobs/day
 - Daily operations model is now well established
 - User support process is in place and being used
 - But it is complex !
 - Site stability is better controlled
 - Apps can select good sites
 - Understanding of metrics and what SLA might look like
 - Ports to other architectures now exist
 - IA64, other Linuxes
 - Convergence of middleware stacks under way
 - gLite components reaching production

Issues:

•

- Hard to balance:
 - Needs of applications for rapid updates
 - Reliable scheduling wanted by sites
 - Adequate testing and certification
- Moving new middleware into production is time consuming:
 - Unrealistic expectations
 - Very stressful
 - But software industry knows ...
- Essential to maintain stable production environment
 - While introducing new functionality, new services
 - Backwards compatibility
 - Expensive in resources and support
- Release of accounting (& other) data
 - some site policies restrict release of per-user data (privacy laws)
 - Accounting, job monitoring, ...
- Introducing new VOs is still too difficult

INFSO-RI-508833

Plans until end of project

- Remainder of EGEE
 - Milestones:
 - MSA1.5 (PM21) Expanded production grid available (50 sites)
 - Deliverables:
 - DSA1.7 (PM19) Cookbook internal review
 - DSA1.8 (PM23) Assessment of production operation (update of DSA1.4)
 - DSA1.9 (PM21) Release notes corresponding to MSA1.5
 - Full metrics programme implemented (scope agreed in Pisa, Oct '05)
 - Service availability SLA for LCG (MoU)
 - Deploy major gLite components in production
- Sustainability
 - Prepare processes for EGEE-II
 - Re-focus on middleware support and building deployable distributions: Merge integration, testing (JRA1) with integration and certification (SA1) into single team with distributed partners
 - Work with embryonic TCG to ensure application driven priorities reflected in development and deployment priorities

- Infrastructure at a scale much larger than anticipated for end of year 2:
 - 179 sites, 17k CPU, 39 countries
- Being used at a significant scale for daily production:
 - Sustaining > 10k jobs per day over many months
 - Many applications, not just HEP
 - Massive sustained data throughput > 500MB/s for 10 days
 - LCG service challenges, Biomed (WISDOM) data challenge
- Operational oversight grid "operator on duty"
 - In place for 1 year, CERN, IN2P3, INFN, CCLRC, Russia, ASGC
 - Improved stability of sites \rightarrow VO-specific selection of "good" sites
 - Metrics on stability and availability \rightarrow SLAs
- **Pre-production service available**
 - In use by many applications, as testing ground for gLite
- gLite components now in deployed middleware distribution
 - VOMS, R-GMA, FTS, others (WMS) being certified now
- Interoperability
 - With OSG demonstrated, work in progress with ARC
 - Shared operational oversight with OSG under discussion